Notes: Change of Variables in One Dimension

Joshua Siktar

January 11, 2019

1 Context

These notes were created as a contribution for the Carnegie Mellon University Mathematics Department Spring 2019 Teaching Assistant Orientation.

2 Introduction

Oftentimes we are faced with integrating some function $f: \mathbb{R} \rightarrow \mathbb{R}$ either as an indefinite integral

$$
\int f(x) d x
$$

or as a definite integral

$$
\int_{a}^{b} f(x) d x
$$

Sometimes performing some type of substitution on the integrand helps with evaluating this integral in either case. This substitution will be of the form

$$
u=g(x)
$$

where g is differentiable. In this case

$$
\frac{d u}{d x}=g^{\prime}(x)
$$

and

$$
d u=g^{\prime}(x) d x
$$

This technique can be used to rewrite the integral $\int f(x) d x$ as an integral over u.

3 Indefinite Integral I

Example 1: We compute $\int \cos x e^{\sin x} d x$.
Solution: Let $u=\sin x$. Then

$$
\frac{d u}{d x}=\cos x \Rightarrow d u=\cos x d x
$$

and substituting this into the integral yields

$$
\int \cos x \cdot e^{\sin x} d x=\int \cos x \cdot e^{u} d x=\int e^{u} d u=e^{u}+C
$$

Note that as always we must undo any substitutions we make. Since $u=\sin x$,

$$
\int \cos x e^{\sin x} d x=e^{\sin x}+C
$$

4 Definite Integral I

Example 2: We compute $\int_{0}^{\pi}(4 x+7+3 \cos x) \sin \left(2 x^{2}+7 x+3 \sin (x)\right) d x$.
Solution: We first compute the indefinite integral $\int(4 x+7+3 \cos x) \sin \left(2 x^{2}+7 x+3 \sin (x)\right) d x$. Let $u=2 x^{2}+7 x+3 \sin (x)$. Then

$$
\frac{d u}{d x}=4 x+7+3 \cos x \Rightarrow d u=(4 x+7+3 \cos (x)) d x
$$

so the integral becomes

$$
\int \sin (u) d u=-\cos (u)+C
$$

Now undo the substitution:

$$
\int(4 x+7+3 \cos x) \sin \left(2 x^{2}+7 x+3 \sin (x)\right) d x=-\cos \left(2 x^{2}+7 x+3 \sin (x)\right)
$$

We now compute the definite integral, acknowledging the bounds of integration:

$$
\begin{gathered}
\int_{0}^{\pi}(4 x+7+3 \cos x) \sin \left(2 x^{2}+7 x+3 \sin (x)\right) d x=\left[-\cos \left(2 x^{2}+7 x+3 \sin (x)\right]_{0}^{\pi}=\right. \\
-\cos \left(2(\pi)^{2}+7(\pi)+3 \sin (\pi)\right)+\cos \left(2(0)^{2}+7(0)+3 \sin (0)\right)=-\cos \left(2 \pi^{2}+7 \pi\right)+\cos (0)=1-\cos \left(2 \pi^{2}+7 \pi\right)
\end{gathered}
$$

5 Tips and Tricks

Some general advice for handling substitution techniques:

1. To identify a function $u=g(x)$ to use in a substitution, look for some function that appears in the integrand that also has its derivative appearing in the integrand.
2. Look to remove more intimidating expressions within the integrand: square roots, function compositions, etc.
3. Split an integral into a sum or difference of integrals.
4. Trial and error is important. Some u-substitutions actually make the integral in question once.

6 Indefinite Integral II

We now do a more complicated indefinite integral.
Example 3: We compute $\int\left(e^{e^{x}}+e^{x}\right) e^{x} d x$.
Solution: We expand the product:

$$
\int\left(e^{e^{x}}+e^{x}\right) e^{x} d x=\int e^{e^{x}} e^{x}+e^{2 x} d x=\int e^{e^{x}} e^{x} d x+\int e^{2 x} d x
$$

The second integral is easy:

$$
\int e^{2 x} d x=\frac{1}{2} e^{2 x}+C_{1}
$$

As for the first integral, let $u=e^{x}$, and then $d u=e^{x} d x$, so

$$
\int e^{e^{x}} e^{x} d x=\int e^{e^{x}} d u=\int e^{u} d u=e^{u}+C_{2}
$$

We must undo this substitution:

$$
\int e^{e^{x}} e^{x} d x=e^{e^{x}}+C_{2}
$$

Finally combine the two integrals:

$$
\int\left(e^{e^{x}}+e^{x}\right) e^{x} d x=\frac{1}{2} e^{2 x}+e^{e^{x}}+C
$$

where $C \in \mathbb{R}$ is arbitrary.

