21269 Practice Midterm 1

Joshua Siktar (jsiktar)

February 5, 2018

1 Problem 1

Let $E \subset \mathbb{R}^{n}$. If $f, g: E \rightarrow \mathbb{R}^{n}$ are Lipschitz continuous, prove that $f+g$ must also be Lipschitz continuous on E.

2 Problem 2

a. Let $E \subset \mathbb{R}^{n}$ and $\partial E=E$. Then show that $E^{\prime} \subseteq \partial E$.
b. Prove the following claim or find a counterexample: let there be finitely many sets indexed E_{i} such that $\bigcup_{i=1}^{n} E_{i} \subset \mathbb{R}^{n}$. Then $\bigcap\left(E \backslash E_{i}^{\prime}\right)$ is an open set.
c. Let $E=\left\{x \in \mathbb{R}^{2016} . x_{i}>0 \forall i \in\{1,2, \ldots, 2015\}, x_{2016} \in P\right\}$, where P is the set of prime numbers. Compute $E^{\circ}, E^{\prime}, \bar{E}$, and ∂E, justifying your results (Hint: it may not be best to determine the sets in the order listed).

3 Problem 3

a. Compute $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2}}$.
b. Show that $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{3}}$ without using L'Hopital's Rule.
c. Prove that $f(x)=\frac{1-\cos ^{2} x}{x^{3}}$, where $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$, is continuous.

4 Problem 4

For each proposed definition either state that it is correct as is, or modify the definition if it is incorrect.
a. Boundary point: $x \in E$ is a boundary point if $\exists \epsilon>0 .(B(x, \epsilon) \cap E \neq \emptyset) \wedge(B(x, \epsilon) \cap$ $\left.E^{C} \neq \emptyset\right)$.
b. Special orthogonal matrices $S O(n): S O(n)=\left\{M \in \mathbb{R}^{n \times n} .(M \in O(n)) \wedge(\operatorname{det}(M)=\right.$ 1) $\}$.
c. Isolated point: $x \in E$ is an isolated point if $x \in\left(E^{\prime}\right)^{C}$.
d. Bounded sequence: If $\left\{x^{(k)}\right\}_{k=\ell}^{\infty} \subset \mathbb{R}^{n}$ is a sequence, it is bounded if $\exists M>0$. $\left|x^{(k)}\right|<M \forall k \geq \ell$.
e. Uniformly continuous on set $E \subset \mathbb{R}^{n}$: for some $x \in E, \forall \epsilon>0, \exists \sigma>0$ so that $((Y \in E) \wedge(|x-y|<\sigma)) \Rightarrow(|f(x)-f(y)|<\epsilon)$.

5 Problem 5

The supremum property of the real numbers has been a crucial base for many proofs throughout the course. Cite one theorem/lemma/corollary which utilized the supremum property of the real numbers, and explain why this property is instrumental in the proof (no need to give a full proof of the theorem you chose)

6 Problem 6

Consider this conjecture: if $z \in \mathbb{R}^{n}$, then we have $B_{\|\cdot\|_{2}}[z, r] \subset B_{\|\cdot\|_{\infty}}(z, r)$. If it is true prove it; if it is false, find an $x \in \mathbb{R}^{n}$ that invalidates the conjecture. Note that we let $\|\cdot\|_{2}$ be the 2 -norm and $\|\cdot\|_{\infty}$ be the infinity norm.

$7 \quad$ Problem 7

Reprove this result from lecture: $\left\{x^{(k)}\right\}_{k=\ell}^{\infty}$ is convergent if and only if it is Cauchy.

