21341 Practice Midterm 1

Joshua Siktar (jsiktar)

February 18, 2018

1 Problem 1

Let $u_{1}, u_{2}, \ldots, u_{m}$ and v_{1}, \ldots, v_{n} be collections of vectors within a vector space V such that the vectors $u_{1}, u_{2}, \ldots, u_{m}$ are linearly independent and v_{1}, \ldots, v_{n} are linearly independent. Prove that for any $v_{j}(j=1,2, \ldots, n)$ there exists at most one vector u_{i} for which u_{i} and v_{j} are linearly dependent.

2 Problem 2

Let $Z_{i} \mathcal{P}(\mathbb{Z})$ denote the space of all polynomials with integer coefficients that are a multiple of i and underlying field \mathbb{Z}, where $i \in \mathbb{N}^{+}$. Let $Z_{i} \mathcal{P}^{r}(\mathbb{Z})$ denote the space of all polynomials of degree at most r having integer coefficients which are multiples of i and underlying field Z.

Clearly all of these spaces are vector spaces.
a. Let $i \leq j$. Prove that $Z_{i} \mathcal{P}(\mathbb{Z})$ is a subspace of $Z_{j} \mathcal{P}(\mathbb{Z})$ if and only if i is a multiple of j.
b. Let $i, j, r \in \mathbb{N}^{+}$. Prove that $\operatorname{dim}\left(Z_{i} \mathcal{P}^{r}(\mathbb{Z})\right)=\operatorname{dim}\left(Z_{j} \mathcal{P}^{r}(\mathbb{Z})\right)$.

3 Problem 3

Let V and W be finite-dimensional vector spaces where $\operatorname{dim}(V)=k$ and $\operatorname{dim}(W)=n$, and let $T_{1}, T_{2}, \ldots, T_{m} \in \mathcal{L}(V, W)$.
a. Prove that

$$
\operatorname{range}\left[T_{1}\right] \cap \ldots \cap \operatorname{range}\left[T_{m}\right]
$$

is a subspace of W.
b. Prove that if

$$
\operatorname{dim}\left(\operatorname{range}\left[T_{1}\right]+\ldots+\operatorname{range}\left[T_{m}\right]\right)=m n
$$

then $T_{1}, T_{2}, \ldots, T_{m}$ are all surjective.

4 Problem 4

Let V be a finite-dimensional vector space of dimension n and let V^{\prime} be its dual space. Let A be the collection of all bases of V represented as ordered n-tuples of vectors, and let B be the collection of all bases of V^{\prime} represented as ordered n-tuples of vectors. Fix some v_{1}, \ldots, v_{n} basis of V and let $v_{1}^{*}, \ldots, v_{n}^{*}$ be its dual basis in V^{\prime}. Let $\Pi: A \rightarrow B$ be defined so that for an arbitrary basis w_{1}, \ldots, w_{n} of V,

$$
\Pi\left(\left(w_{1}, \ldots, w_{n}\right)\right)=\left(v_{1}^{*}\left(w_{1}\right), \ldots, v_{n}^{*}\left(w_{n}\right)\right)
$$

Prove that $\Pi \in \mathcal{L}(A, B)$.

5 Problem 5

a. Let V a be finite dimensional vector space, let $T \in \mathcal{L}(V, W)$, and let $T^{\prime} \in \mathcal{L}\left(W^{\prime}, V^{\prime}\right)$ be the dual map of T. Prove that

$$
\operatorname{dim}\left(V^{\prime}\right)=\operatorname{dim}\left((\operatorname{range}(T))^{0}\right)+\operatorname{dim}\left(((T))^{0}\right)
$$

b. Under the same premises of the above part, prove

$$
\operatorname{dim}\left(V^{\prime}\right)+\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}((T))=2 \operatorname{dim}(V),
$$

