
21341 Practice Midterm 1 Solutions

Joshua Siktar (jsiktar)

February 18, 2018

1 Problem 1

Let j ∈ {1, 2, ..., n}. We will proceed by contradiction. Assume there exist ui and uk where
i < k and vj is linearly dependent with ui and with uk. Then ∃λi, λk, µj , ρj 6= 0 such that

λiui + µjvj = 0

λkuk + ρjvj = 0

Since ρj 6= 0, it has a unique inverse in the underlying field that we will call ρ−1j . Since
λkuk + ρjvj = 0 it immediately follows that

λkρ
−1
j µjuk + µjvj = 0

Subtracting this from λiui + µjvj = 0 gives

λiui − λkρ−1j µjuk = 0

We can rewrite this equation in terms of all of the vectors u1, ..., um:

0u1 + ...+ oui−1 + λiui + 0ui+1 + ...+ 0uk−1 − λkρ−1j µjuk + 0uk+1 + ...+ 0um = 0

Since λi 6= 0, we conclude that the vectors u1, u2, ..., um are linearly dependent, a direct
contradiction to their independence. �

2 Problem 2

We let i ≤ j and first assume i is a multiple of j. Then we show ZiP(Z) is a subspace of
ZjP(Z). Since 0 is a multiple of any ZiP(Z), the zero polynomial is in ZiP(Z). Now we
show closure under addition. Consider two polynomials in ZiP(Z):

a0 + a1x+ ...+ amx
m
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b0 + b1x+ ...+ bnx
n

Assume without loss of generality that n ≥ m. Then a0, a1, ...., am, b0, ..., bn are all
multiples of j. In particular, the sum of any of these coefficients is a multiple of j, so

(a0 + b0) + ...+ (am + bm)xm + bm+1x
m+1 + ...+ bnx

n

is also in ZiP(Z). Now let λ ∈ Z. Since ak is a multiple of j for any k ∈ {0, 1, ...,m},
so is λak. In particular,

λa0 + λa1x+ ...+ λamx
m ∈ ZiP(Z),

and it follows that ZiP(Z) is a subspace of ZjP(Z).

Now we assume ZiP(Z) is a subspace of ZjP(Z) and want to show that i is a multiple
of j. Assume for sake of contradiction that i is not a multiple of j. Then the constant
polynomial i is not in ZjP(Z), so ZiP(Z) is not even contained by ZjP(Z). ZiP(Z) cannot
possibly be a subspace of ZjP(Z), a contradiction. �

b. It suffices to construct a basis of ZiPr(Z) and a basis of ZjPr(Z) and show that
they contain the same number of vectors. Let

Bi := {i, ix, ix2, ..., ixr}

Bj := {j, jx, jx2, ..., jxr}

Both of these collections of vectors have r+ 1 vectors, and we will show Bi is a basis of
ZiPr(Z) and that Bj is a basis of ZjPr(Z). Clearly the collection Bi := {i, ix, ix2, ..., ixr}
is linearly independent since a polynomial is the zero polynomial only if all of its coefficients
are zero. Moreover, these vectors span ZiPr(Z) because any polynomial in ZiPr(Z) can
be written [uniquely] in the form

a0 + a1x+ ...+ arx
r,

where ∃λ0, ..., λr ∈ Z such that ak = λki for each k ∈ {0, 1, ..., r}. Hence Bi is a basis
of ZiPr(Z), and by identical reasoning, Bj is a basis of ZjPr(Z) as well. Since each basis
contains r + 1 vectors listed, we have dim(ZiPr(Z)) = dim(ZjPr(Z)), as desired. �

3 Problem 3

a. Let S := range[T1] ∩ ... ∩ range[Tm]. First note we proved in lecture that range[Ti] is a
subspace of W for each i ∈ [m]. Thus 0 ∈ range[Ti] ∀i ∈ [m], so in fact 0 ∈ S. Now let
a, b ∈ S and λ ∈ F, and we show that a+ b, λa ∈ S. Since each range[Ti] is a subspace of
W , in fact a + b, λa ∈ range[Ti] ∀i ∈ [m], so it follows that a + b, λa ∈ S. Hence S is a
subspace of W .

2



b. Since dim(W ) = n, and range[Ti] ⊂ W ∀i ∈ [m], we have that dim(range[Ti]) ≤
n ∀i ∈ [m], and then

dim(range[T1]) + ...+ dim(range[Tm]) ≤ mn
Since W is finite dimensional, so is each range[Ti], so by Exercise 2.C.14 from Homework

2,

dim(range[T1] + ...+ range[Tm]) ≤ dim(range[T1]) + ...+ dim(range[Tm])

As we are given dim(range[T1] + ...+ range[Tm]) = mn, it follows that

dim(range[T1]) + ...+ dim(range[Tm]) = mn

Moreover, as the dimension of each subspace is at most n we have dim(range[T1]) =
n ∀i ∈ [m]. In particular, it follows that range[Ti] = W ∀i ∈ [m], meaning each map Ti is
surjective, as desired. �

4 Problem 4

Let a, b ∈ A, λ ∈ F. Then we want to show

Π(a+ b) = Π(a) + Π(b)

Π(λa) = λΠ(a)

We will represent a and b coordinate-wise:

a := (x1, ..., xn)

b := (y1, ..., yn)

where x1, ..., xn and y1, ..., yn are bases of V . Then since the dual basis vectors v∗1, ..., v
∗
n

are linear maps from V to F,

Π(a+ b) = Π((x1 + y1, ..., xn + yn)) = (v∗1(x1 + y1), ..., v
∗
n(xn + yn)) =

(v∗1(x1) + v∗1(y1), ..., v
∗
n(xn) + v∗n(yn)) = (v∗1(x1), ..., v

∗
n(xn)) + (v∗1(y1), ..., v

∗
n(yn)) =

Π((x1, ..., xn)) + Π((y1, ..., yn)) = Π(a) + Π(b)

Furthermore,

Π(λa) = Π((λx1, ..., λxn)) = (v∗1(λx1), ..., v
∗
n(λxn)) = (λv∗1(x1), ..., λv

∗
n(xn)) =

λ(v∗1(x1), ..., v
∗
n(xn)) = λΠ((x1, ..., xn)) = λΠ(a),

as desired. �
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5 Problem 5

a. Note that V ′ = L(V,F). Since V is finite dimensional, so is V ′, and so we know that

dim(V ′) = dim((T ′)) + dim(range(T ′))

Moreover, we proved in lecture that (T ′) = (range(T ))0 and range(T ′) = ((T ))0, so the
result follows immediately.

b. Note that (T ) and range(T ) are subspaces of V , so

dim((T )) + dim(((T ))0) = dim(V )

dim(range(T )) + dim((range(T ))0) = dim(V )

Substituting these into the result of part a gives

dim(V ′) = dim(V )− dim(range(T )) + dim(V )− dim((T ))⇒

dim(V ′) + dim(range(T )) + dim((T )) = 2 dim(V ),

as desired. �
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