21341 Practice Midterm 1 Solutions

Joshua Siktar (jsiktar)

February 18, 2018

1 Problem 1

Let $j \in\{1,2, \ldots, n\}$. We will proceed by contradiction. Assume there exist u_{i} and u_{k} where $i<k$ and v_{j} is linearly dependent with u_{i} and with u_{k}. Then $\exists \lambda_{i}, \lambda_{k}, \mu_{j}, \rho_{j} \neq 0$ such that

$$
\begin{gathered}
\lambda_{i} u_{i}+\mu_{j} v_{j}=0 \\
\lambda_{k} u_{k}+\rho_{j} v_{j}=0
\end{gathered}
$$

Since $\rho_{j} \neq 0$, it has a unique inverse in the underlying field that we will call ρ_{j}^{-1}. Since $\lambda_{k} u_{k}+\rho_{j} v_{j}=0$ it immediately follows that

$$
\lambda_{k} \rho_{j}^{-1} \mu_{j} u_{k}+\mu_{j} v_{j}=0
$$

Subtracting this from $\lambda_{i} u_{i}+\mu_{j} v_{j}=0$ gives

$$
\lambda_{i} u_{i}-\lambda_{k} \rho_{j}^{-1} \mu_{j} u_{k}=0
$$

We can rewrite this equation in terms of all of the vectors u_{1}, \ldots, u_{m} :

$$
0 u_{1}+\ldots+o u_{i-1}+\lambda_{i} u_{i}+0 u_{i+1}+\ldots+0 u_{k-1}-\lambda_{k} \rho_{j}^{-1} \mu_{j} u_{k}+0 u_{k+1}+\ldots+0 u_{m}=0
$$

Since $\lambda_{i} \neq 0$, we conclude that the vectors $u_{1}, u_{2}, \ldots, u_{m}$ are linearly dependent, a direct contradiction to their independence.

2 Problem 2

We let $i \leq j$ and first assume i is a multiple of j. Then we show $Z_{i} \mathcal{P}(\mathbb{Z})$ is a subspace of $Z_{j} \mathcal{P}(\mathbb{Z})$. Since 0 is a multiple of any $Z_{i} \mathcal{P}(\mathbb{Z})$, the zero polynomial is in $Z_{i} \mathcal{P}(\mathbb{Z})$. Now we show closure under addition. Consider two polynomials in $Z_{i} \mathcal{P}(\mathbb{Z})$:

$$
a_{0}+a_{1} x+\ldots+a_{m} x^{m}
$$

$$
b_{0}+b_{1} x+\ldots+b_{n} x^{n}
$$

Assume without loss of generality that $n \geq m$. Then $a_{0}, a_{1}, \ldots, a_{m}, b_{0}, \ldots, b_{n}$ are all multiples of j. In particular, the sum of any of these coefficients is a multiple of j, so

$$
\left(a_{0}+b_{0}\right)+\ldots+\left(a_{m}+b_{m}\right) x^{m}+b_{m+1} x^{m+1}+\ldots+b_{n} x^{n}
$$

is also in $Z_{i} \mathcal{P}(\mathbb{Z})$. Now let $\lambda \in \mathbb{Z}$. Since a_{k} is a multiple of j for any $k \in\{0,1, \ldots, m\}$, so is λa_{k}. In particular,

$$
\lambda a_{0}+\lambda a_{1} x+\ldots+\lambda a_{m} x^{m} \in Z_{i} \mathcal{P}(\mathbb{Z}),
$$

and it follows that $Z_{i} \mathcal{P}(\mathbb{Z})$ is a subspace of $Z_{j} \mathcal{P}(\mathbb{Z})$.
Now we assume $Z_{i} \mathcal{P}(\mathbb{Z})$ is a subspace of $Z_{j} \mathcal{P}(\mathbb{Z})$ and want to show that i is a multiple of j. Assume for sake of contradiction that i is not a multiple of j. Then the constant polynomial i is not in $Z_{j} \mathcal{P}(\mathbb{Z})$, so $Z_{i} \mathcal{P}(\mathbb{Z})$ is not even contained by $Z_{j} \mathcal{P}(\mathbb{Z})$. $Z_{i} \mathcal{P}(\mathbb{Z})$ cannot possibly be a subspace of $Z_{j} \mathcal{P}(\mathbb{Z})$, a contradiction.
b. It suffices to construct a basis of $Z_{i} \mathcal{P}^{r}(\mathbb{Z})$ and a basis of $Z_{j} \mathcal{P}^{r}(\mathbb{Z})$ and show that they contain the same number of vectors. Let

$$
\begin{aligned}
B_{i} & :=\left\{i, i x, i x^{2}, \ldots, i x^{r}\right\} \\
B_{j} & :=\left\{j, j x, j x^{2}, \ldots, j x^{r}\right\}
\end{aligned}
$$

Both of these collections of vectors have $r+1$ vectors, and we will show B_{i} is a basis of $Z_{i} \mathcal{P}^{r}(\mathbb{Z})$ and that B_{j} is a basis of $Z_{j} \mathcal{P}^{r}(\mathbb{Z})$. Clearly the collection $B_{i}:=\left\{i, i x, i x^{2}, \ldots, i x^{r}\right\}$ is linearly independent since a polynomial is the zero polynomial only if all of its coefficients are zero. Moreover, these vectors span $Z_{i} \mathcal{P}^{r}(\mathbb{Z})$ because any polynomial in $Z_{i} \mathcal{P}^{r}(\mathbb{Z})$ can be written [uniquely] in the form

$$
a_{0}+a_{1} x+\ldots+a_{r} x^{r}
$$

where $\exists \lambda_{0}, \ldots, \lambda_{r} \in \mathbb{Z}$ such that $a_{k}=\lambda_{k} i$ for each $k \in\{0,1, \ldots, r\}$. Hence B_{i} is a basis of $Z_{i} \mathcal{P}^{r}(\mathbb{Z})$, and by identical reasoning, B_{j} is a basis of $Z_{j} \mathcal{P}^{r}(\mathbb{Z})$ as well. Since each basis contains $r+1$ vectors listed, we have $\operatorname{dim}\left(Z_{i} \mathcal{P}^{r}(\mathbb{Z})\right)=\operatorname{dim}\left(Z_{j} \mathcal{P}^{r}(\mathbb{Z})\right)$, as desired.

3 Problem 3

a. Let $S:=\operatorname{range}\left[T_{1}\right] \cap \ldots \cap$ range $\left[T_{m}\right]$. First note we proved in lecture that range $\left[T_{i}\right]$ is a subspace of W for each $i \in[m]$. Thus $0 \in \operatorname{range}\left[T_{i}\right] \forall i \in[m]$, so in fact $0 \in S$. Now let $a, b \in S$ and $\lambda \in \mathbb{F}$, and we show that $a+b, \lambda a \in S$. Since each range $\left[T_{i}\right]$ is a subspace of W, in fact $a+b, \lambda a \in \operatorname{range}\left[T_{i}\right] \forall i \in[m]$, so it follows that $a+b, \lambda a \in S$. Hence S is a subspace of W.
b. Since $\operatorname{dim}(W)=n$, and range $\left[T_{i}\right] \subset W \forall i \in[m]$, we have that $\operatorname{dim}\left(\operatorname{range}\left[T_{i}\right]\right) \leq$ $n \forall i \in[m]$, and then

$$
\operatorname{dim}\left(\operatorname{range}\left[T_{1}\right]\right)+\ldots+\operatorname{dim}\left(\operatorname{range}\left[T_{m}\right]\right) \leq m n
$$

Since W is finite dimensional, so is each range $\left[T_{i}\right]$, so by Exercise 2.C. 14 from Homework 2 ,

$$
\operatorname{dim}\left(\operatorname{range}\left[T_{1}\right]+\ldots+\operatorname{range}\left[T_{m}\right]\right) \leq \operatorname{dim}\left(\operatorname{range}\left[T_{1}\right]\right)+\ldots+\operatorname{dim}\left(\operatorname{range}\left[T_{m}\right]\right)
$$

As we are given $\operatorname{dim}\left(\operatorname{range}\left[T_{1}\right]+\ldots+\operatorname{range}\left[T_{m}\right]\right)=m n$, it follows that

$$
\operatorname{dim}\left(\operatorname{range}\left[T_{1}\right]\right)+\ldots+\operatorname{dim}\left(\operatorname{range}\left[T_{m}\right]\right)=m n
$$

Moreover, as the dimension of each subspace is at most n we have $\operatorname{dim}\left(\operatorname{range}\left[T_{1}\right]\right)=$ $n \forall i \in[m]$. In particular, it follows that range $\left[T_{i}\right]=W \forall i \in[m]$, meaning each map T_{i} is surjective, as desired.

4 Problem 4

Let $a, b \in A, \lambda \in \mathbb{F}$. Then we want to show

$$
\begin{gathered}
\Pi(a+b)=\Pi(a)+\Pi(b) \\
\Pi(\lambda a)=\lambda \Pi(a)
\end{gathered}
$$

We will represent a and b coordinate-wise:

$$
\begin{aligned}
a & :=\left(x_{1}, \ldots, x_{n}\right) \\
b & :=\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

where x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} are bases of V. Then since the dual basis vectors $v_{1}^{*}, \ldots, v_{n}^{*}$ are linear maps from V to \mathbb{F},

$$
\begin{gathered}
\Pi(a+b)=\Pi\left(\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)\right)=\left(v_{1}^{*}\left(x_{1}+y_{1}\right), \ldots, v_{n}^{*}\left(x_{n}+y_{n}\right)\right)= \\
\left(v_{1}^{*}\left(x_{1}\right)+v_{1}^{*}\left(y_{1}\right), \ldots, v_{n}^{*}\left(x_{n}\right)+v_{n}^{*}\left(y_{n}\right)\right)=\left(v_{1}^{*}\left(x_{1}\right), \ldots, v_{n}^{*}\left(x_{n}\right)\right)+\left(v_{1}^{*}\left(y_{1}\right), \ldots, v_{n}^{*}\left(y_{n}\right)\right)= \\
\Pi\left(\left(x_{1}, \ldots, x_{n}\right)\right)+\Pi\left(\left(y_{1}, \ldots, y_{n}\right)\right)=\Pi(a)+\Pi(b)
\end{gathered}
$$

Furthermore,

$$
\begin{gathered}
\Pi(\lambda a)=\Pi\left(\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)\right)=\left(v_{1}^{*}\left(\lambda x_{1}\right), \ldots, v_{n}^{*}\left(\lambda x_{n}\right)\right)=\left(\lambda v_{1}^{*}\left(x_{1}\right), \ldots, \lambda v_{n}^{*}\left(x_{n}\right)\right)= \\
\lambda\left(v_{1}^{*}\left(x_{1}\right), \ldots, v_{n}^{*}\left(x_{n}\right)\right)=\lambda \Pi\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\lambda \Pi(a),
\end{gathered}
$$

as desired.

5 Problem 5

a. Note that $V^{\prime}=\mathcal{L}(V, \mathbb{F})$. Since V is finite dimensional, so is V^{\prime}, and so we know that

$$
\operatorname{dim}\left(V^{\prime}\right)=\operatorname{dim}\left(\left(T^{\prime}\right)\right)+\operatorname{dim}\left(\operatorname{range}\left(T^{\prime}\right)\right)
$$

Moreover, we proved in lecture that $\left(T^{\prime}\right)=(\operatorname{range}(T))^{0}$ and range $\left(T^{\prime}\right)=((T))^{0}$, so the result follows immediately.
b. Note that (T) and range (T) are subspaces of V, so

$$
\begin{gathered}
\operatorname{dim}((T))+\operatorname{dim}\left(((T))^{0}\right)=\operatorname{dim}(V) \\
\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}\left((\operatorname{range}(T))^{0}\right)=\operatorname{dim}(V)
\end{gathered}
$$

Substituting these into the result of part a gives

$$
\begin{gathered}
\operatorname{dim}\left(V^{\prime}\right)=\operatorname{dim}(V)-\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}(V)-\operatorname{dim}((T)) \Rightarrow \\
\operatorname{dim}\left(V^{\prime}\right)+\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}((T))=2 \operatorname{dim}(V),
\end{gathered}
$$

as desired.

