21369 Practice Midterm 1

Joshua Siktar (jsiktar)

February 4, 2018

1 Problem 1

a. Perhaps we are trying to approximate the value of $\sqrt{42}$ with Newton's Method. Choose some polynomial f, with $\sqrt{42}$ as a root, and use two iterations of Newton's Method on f with initial approximation $x_{0}=6$.
b. If $f(x)$ is the polynomial you used in part a, let $g(x)=f(x)^{2}$ on \mathbb{R}. Why would it be unwise to use $g(x)$ instead of $f(x)$ with Newton's Method to approximate $\sqrt{42}$?

2 Problem 2

Let f be a class C^{∞} function over \mathbb{R} (that is, f can be differentiated infinitely many times). Consider approximating $f^{\prime \prime}$ with an expansion of the form

$$
A f\left(x+h^{2}\right)+B f(x+h)-B f(x-h)-A f\left(x-h^{2}\right)
$$

where h is a "small" deviation and $A, B \in \mathbb{R}$. Demonstrate using Taylor's Theorem that no such approximation exists, at least without adding other terms.

3 Problem 3

Let f be a class C^{2} function over \mathbb{R} (that is, f can be differentiated twice and $f^{\prime \prime}$ is continuous), where $f^{\prime \prime}(x) \geq 0$ on \mathbb{R} and r is a simple root of f. A student wonders if we can modify Newton's Method to depend on x_{n-1} and x_{n} instead of just x_{n} and get a faster convergence rate to the root as a result. The student devises the Weighted Newton Method, which is defined as

$$
x_{n+1}=\frac{2}{3}\left(x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right)+\frac{1}{3}\left(x_{n-1}+\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}\right)
$$

for $n \geq 1$, where x_{0} and x_{1} are given. Assume that $\left|e_{k}\right| \leq\left|e_{k-1}\right| \forall k \in \mathbb{N}^{+}$, and prove for the Weighted Newton Method that

$$
\left|e_{n+1}\right| \leq \frac{4}{3}\left|e_{n}\right|+\frac{2}{3}\left|e_{n-1}\right|
$$

(Hint: using Taylor's Theorem and some algebra find an upper bound for $\left|e_{n}+\frac{f\left(e_{n}\right)}{f^{\prime}\left(e_{n}\right)}\right|$)

