21369 Practice Midterm 1 Solutions

Joshua Siktar (jsiktar)

February 4, 2018

1 Solution to Problem 1

a. The natural choice of polynomial is f(z) = 2? — 42. Then f'(x) = 2z. Using Newton’s
Method twice times gives
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b. We will demonstrate using f(z) from part a, though answers will vary if you chose
a different f. g(x) = (22 — 42)2, which notably has /42 as a double root. Then
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by the Chain Rule, which has /42 as a root itself. In other words, Newton’s Method
is not effective because the root we are trying to approximate is not simple.

2 Solution to Problem 2

We use Taylor’s Theorem on each term in the proposed approximation:
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where ] is between x and = + h?, and similarly for the other &. Combine the first two
equations and the last two equations, and multiply by the respective constants A and B:
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Bf(z+h) — Bf(z —h) = 2hBf'(z) + %[f”’(&a) + "))
Then
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The desired approximation scheme is impossible as there is no f”(z) term. We cannot
solve equations to identify A and B and obtain anything meaningful. [J

3 Solution to Problem 3

As z, = r + e, for any k € NT, we can use Taylor’s Theorem on f and f’ up to the f”
term:
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Note that we can rewrite the iteration scheme with e; terms:
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as follows:

Now we can estimate
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Since f”(x) > 0 on R, we obtain
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We can also perform the same process on e,_1 + 7 ((x” 1)) to get the analogous estimate
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Now we use our two estimates in conjunction with the Triangle Inequality:
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as desired. OJ
Remark: This bound is not good enough to assure convergence because of the factor
of %. The student has more thinking to do!



