21369 Practice Midterm 2

Joshua Siktar (jsiktar)

April 9, 2018

1 Problem 1

a. Let f be a Riemann Integrable function, and say we seek to approximate

$$
\int_{0}^{1} f(x) d x \approx A f\left(\frac{1}{2}\right)+B\left(\frac{1}{4}\right)+C f(0)
$$

for some constants $A, B, C \in \mathbb{R}$. Find the $A, B, C \in \mathbb{R}$ such that the above approximation is exact for polynomials up to degree 2 .
b. Generalize your solution to part a to some arbitrary interval $[a, b] \subseteq \mathbb{R}$, where $a<b$.
c. Let $n>2$ be arbitrary. Using the formula from part a, compute the error of our approximation scheme for computing $\int_{0}^{1} x^{n} d x$.

2 Problem 2

Let $E \subset \mathbb{R}$ be a set. A lower bound of the set E is some $b \in \mathbb{R}$ such that $b \leq x \forall x \in E$. The infimum of the set E, when it exists, is denoted $\inf (E)$. This value is a lower bound t of E such that for any lower bound b of $E, b \leq t$. In this problem we fix some matrix $A \in \mathbb{R}^{n \times n}$ and define the 2γ-norm as a function $\|\cdot\|_{2 \gamma}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be

$$
\|A x\|_{2 \gamma}=\inf _{n \in \mathbb{N}^{+}}\left\|A^{n} x\right\|_{2},
$$

where $\|\cdot\|_{2}$ is the 2 -norm on vectors in \mathbb{R}^{n}. [sidenote: the notion of a 2γ-norm is one I devised myself for use on this practice exam.]
a. Assume E is a set for which an infimum exists. Prove that the infimum is unique (because we want to implicitly assume this in later parts of the problem).
b. Suppose that A is a nilpotent matrix, for which $\exists k \in \mathbb{N}^{+}$such that $A^{k}=0$. Prove that for such A, the 2γ-norm is not a norm.
c. Contrary to part b, assume now that A is not a nilpotent matrix, that is, $\forall n \in$ $\mathbb{N}^{+}, A^{n} \neq 0$. Prove that for such A, the 2γ-norm is a norm. (Hint: you may use the
following two facts without proof: let $a \geq 0$ and for a set E with an infimum define $a E=\{a x: x \in E\}$. Then $\inf _{x \in E} a E=a \cdot \inf _{x \in E} E$. Also, for any $x, y \in \mathbb{R}^{n}$ you may use that $\left.\inf _{n \in \mathbb{N}^{+}}\left(\left\|A^{n} x\right\|_{2}+\left\|A^{n} x\right\|_{2}\right) \leq \inf _{n \in \mathbb{N}^{+}}\left\|A^{n} x\right\|_{2}+\inf _{n \in \mathbb{N}^{+}}\left\|A^{n} y\right\|_{2}\right)$.

3 Problem 3

Consider the ODE

$$
\left\{\begin{array}{l}
x^{\prime}(t)=5 e^{t}+x+t \\
x(0)=1
\end{array}\right.
$$

Perhaps we want to approximate a solution to this ODE.
a. Let $h>0$ be some arbitrary step size, where we "begin" approximating a solution to this ODE at $t=0$. Using the left-hand approximation rule, compute $x(h)$.
b. Now recall the Runge-Katta Scheme of Order 2:

$$
x(t+h)=x(t)+\frac{h}{2} f(t, x)+\frac{h}{2} f(t+h, x+h f(t, x))
$$

Find an alternative approximation for the ODE using this scheme, expanding the $f(t+h, x+h f(t, x))$ term with 2-dimensional Taylor's Formula up to the 1st order partial derivatives and simplifying. That is, find another expression for $x(h)$.

4 Problem 4

a. If solving $A x=b$ where A is a diagonal matrix without zero as an eigenvalue, show that the Gauss-Seiden method for estimating the solution x indeed converges to the solution.
b. Again consider estimating a solution to $A x=b$. The Gauss-Seiden method uses an "initial matrix" $Q=D+L$, where D and L are the diagonal and lower triangle parts of A, respectively. Explain why the analogous algorithm with starting matrix $Q=D+U$, where U is the upper triangle part of A, will also converge, under analogous conditions to those guaranteeing the convergence of Gauss-Seiden (by no means am I expecting a formal proof here!).

