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1 Solution to Problem 1

a.

We make the approximation exact by letting f(z) = 1,x,2?

in the approximation
scheme and generating a system to solve for A, B, C"

1
/ lde=A+B+C=1
0

242
! A B 1
2
d 242
/Oxx 171673

One can solve this system of linear equations, ideally by first solving the last two
equations as just a system of A and B. The unique result is (A, B,C) = (§ —12

3> 3 3). Note
that since this approximation is exact for f(x) = 1,z, 22, it is exact for any polynomial of

degree < 2 because any such polynomial is a linear combination of 1, z, 22

b. The change of variables formula to convert an approximation from an interval [c, d]

to an interval [a, b] is
b—a ad — be
Alt) = t
(t) <d—c> * d—c

Since ¢ = 0 and d = 1, in our case,

At)=(b—a)t+a

Now we perform a change of variables, letting # = A(t), and then %

b 1
/f(a:)dx:(b—a)/o f((b—a)t+a)dt

o = b—a, so
Using our approximation scheme from part a, this means that
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c. Let n > 2 be arbitrary. Then
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/ "dr = b " = b
0 n + 1 0 n—+ 1

Our approximation scheme for f(z) = z" gives
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As a result, the error term is
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2 Solution to Problem 2

a. Let E be a set with two infima a and b. Then by the definition of infima, for any s and
t that are lower bounds of E (which exist since every infima is a lower bound), s < a and
t <b. As a and b are lower bounds, set s = b and ¢t = a, so we get b < a and a < b, or
a = b. Hence the infimum is unique.

b. One of the conditions for a function being a norm is that it only outputs zero if
the argument is zero. Thus it suffices to show that 3z € R™ \ {0} for which |[Az||2y = 0.
Let x = e;, where e is the “first” standard basis vector on R", i.e. e; = (1,0,0,...,0).
Since A is nilpotent, 3k € Nt for which A¥ = 0. Clearly for any m > k, A™ = 0 as

well since A™ = A¥A™=k Then A™e; = 0 ¥m > k. Since || - ||2 is a norm, this means
||[A™e|ls = 0 Ym > k. Moreover, ||[A"ei|ls > 0 Vn € NT, so by the definition of an
infimum, inf, cy+ ||A"€1|]2 = 0. This means that |[Aei||2y = 0, so || - ||2y is not a norm if

A is nilpotent.

c. We have four conditions to prove to assure || - ||2y is a norm. In doing so, assume
A € R, z,y € R", and implicitly use the fact that || - ||2 is a norm wherever necessary.
i) We first show that ||Az|[2y =0 if 2 = 0.

Ak, = inf [|A"(O)]]2 = inf 0=0

ii) Now assume that ||Az||2, = 0 for some z € R™ and we show that z = 0. We have
that



3 n —
|4allay = inf ||A"all> = 0

Since || - ||2 is a function that maps only onto nonnegative values, and the infimum
above is zero, we have that [|[A"z||s = 0 Vn € Nt and A"z = 0. At the same time,
A™ = 0 Vn € NT. The only possibility is that 2 = 0.

iii) We show that [|[AAz||2y = |A| - ||Az||2y, using the properties of the 2-norm and the
hint provided:

Nl = 1AQ@)lly = inf [IA"(Oa)lloy = i, IN[lA%]] = | inf, | A"2]] = A Axil2,
iv) Finally we show that |[|A(z + y)||2y < ||Az||2y + [|Ay||2y:

[A(z + y)ll2y = inf [[A"2+ A%y|[2
neNt

Note that we can use the Triangle Inequality on || ||2 to get ||A"z+ A™yl|s < ||A™z||2+
||A™y||2 for each n € N*. Essentially, the infimum over all n € N cannot decrease since
no expression ||A"x||2 + ||A™y||2 can be smaller than inf,cn+ ||A"z + A™y||2, so

inf [[A"z+A" < inf (||A™ A" < inf ||A" inf ||A" =1|A A
nf (A" A"y lle < inf (A"l +[A]l) < inf (A7l inf (A7l = [|Ae]2y+] Ayl

as desired. [

3 Solution to Problem 3

a. The left-hand approximation rule for solving ODEs is
t+h

f(s,x(s))ds = hf(t,z(t)).

t

For this problem, h is arbitrary, t = 0, and f(¢, z(t)) = 5e! +x +t, so the approximation
scheme actually equals
z(t+h) —x(t) = hf(t,z(t)) =
z(h) — z(0) = h(5e! + x(t) +t) =
z(h)—1~=h(b+1) =
xz(h) ~ 6h + 1



b. First, plug in f(¢, z):

h h
m(t—l—h):x(t)+§(5et+a:+t)+§f(t+h,m+h(5et+:c+t)):>
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We need to use two-dimensional Taylor on f(t + h,z + (5he' + hx + th)). As we only
need the first-order partial derivatives, we expand as follows:
of of

f(t+h,x+ (5he’ + ha +th)) ~ f(t,z) + har + (5he’ + hx + th)%

Since we have an explicit formula for f, we compute the two partial derivatives explic-
itly:

x(t+h)==xz(t) +

0
8—{:5et—|—x’(t)+1:5et+5et+x+t+1:1Oet+x+t+1
of
L
ox

As a result,

f(t+ h,x+ (5he' + ha +th)) ~ 5! +x +t + h(10e' + x +t + 1) + (5he’ + hx + th) =

f(t+ h,x+ (5he' + ha + th)) ~ 5e' +x +t + h + 15he’ + 2hx + 2th
Substituting this back into the expression for z(t 4 h) yields

5het  h th
2(t+h) ~at) + e+ 2 2

h
5 5 2+5(5et+m+t+h+15het+2h$+2th):>

h?  15h%e!
2(t+h) = o(t) + 5he' + ha + th+ - + 526

Since t = 0 and x = 1 for our ODE, this simplifies even further:

+ h2x + th?

hZ  15h2e0

z(h) = 1+ 5he” + h(1) + (0)h + T +—5—+ h*(1) + 0h* =

z(h) ~ 1+ 6h + 9h?



4 Solution to Problem 4

a. A is a matrix of the form

A0 0
0 X O
0 0 A3

Its eigenvalues are A\, Ao, A3 (immediate). If they are all nonzero, then \; has a larger
magnitude than the other values in row ¢ for i = 1,2, 3, so the matrix is diagonally dom-
inant, and we proved in lecture that Gauss-Seiden converges whenever the matrix A is
diagonally dominant. [

b. We proved in lecture that the Gauss-Seiden Method converges to the solution Az = b
if A is diagonally dominant. It is immediate by checking entries of the form a;; of A that A
is diagonally dominant if and only if AT is diagonally dominant. The lower triangular part
of A becomes the upper triangular part of A7, so we can essentially translate the solving
of ATz = b using Q = U + D of AT to using Gauss-Seiden on Az = b.



