21369 Practice Midterm 2 Solutions

Joshua Siktar (jsiktar)

March 27, 2018

1 Solution to Problem 1

a. We make the approximation exact by letting $f(x)=1, x, x^{2}$ in the approximation scheme and generating a system to solve for A, B, C :

$$
\begin{gathered}
\int_{0}^{1} 1 d x=A+B+C=1 \\
\int_{0}^{1} x d x=\frac{A}{2}+\frac{B}{4}=\frac{1}{2} \\
\int_{0}^{1} x^{2} d x=\frac{A}{4}+\frac{B}{16}=\frac{1}{3}
\end{gathered}
$$

One can solve this system of linear equations, ideally by first solving the last two equations as just a system of A and B. The unique result is $(A, B, C)=\left(\frac{5}{3},-\frac{4}{3}, \frac{2}{3}\right)$. Note that since this approximation is exact for $f(x)=1, x, x^{2}$, it is exact for any polynomial of degree ≤ 2 because any such polynomial is a linear combination of $1, x, x^{2}$.
b. The change of variables formula to convert an approximation from an interval $[c, d]$ to an interval $[a, b]$ is

$$
\lambda(t)=\left(\frac{b-a}{d-c}\right) t+\frac{a d-b c}{d-c}
$$

Since $c=0$ and $d=1$, in our case,

$$
\lambda(t)=(b-a) t+a
$$

Now we perform a change of variables, letting $x=\lambda(t)$, and then $\frac{d x}{d t}=b-a$, so

$$
\int_{a}^{b} f(x) d x=(b-a) \int_{0}^{1} f((b-a) t+a) d t
$$

Using our approximation scheme from part a, this means that

$$
\int_{a}^{b} f(x) d x \approx \frac{5}{3}(b-a) f\left(\frac{b-a}{2}+a\right)-\frac{4}{3}(b-a) f\left(\frac{b-a}{4}+a\right)+\frac{2}{3}(b-a) f(a)
$$

c. Let $n>2$ be arbitrary. Then

$$
\int_{0}^{1} x^{n} d x=\left[\frac{1}{n+1} x^{n+1}\right]_{0}^{1}=\frac{1}{n+1}
$$

Our approximation scheme for $f(x)=x^{n}$ gives

$$
\frac{5}{3}\left(\frac{1}{2}\right)^{n}-\frac{4}{3}\left(\frac{1}{4}\right)^{n}+\frac{2}{3} f(0)=\frac{5}{3 \cdot 2^{n}}-\frac{1}{3 \cdot 4^{n-1}}
$$

As a result, the error term is

$$
\left|\frac{1}{n+1}-\frac{5}{3 \cdot 2^{n}}+\frac{1}{3 \cdot 4^{n-1}}\right|
$$

2 Solution to Problem 2

a. Let E be a set with two infima a and b. Then by the definition of infima, for any s and t that are lower bounds of E (which exist since every infima is a lower bound), $s \leq a$ and $t \leq b$. As a and b are lower bounds, set $s=b$ and $t=a$, so we get $b \leq a$ and $a \leq b$, or $a=b$. Hence the infimum is unique.
b. One of the conditions for a function being a norm is that it only outputs zero if the argument is zero. Thus it suffices to show that $\exists x \in \mathbb{R}^{n} \backslash\{0\}$ for which $\|A x\|_{2 \gamma}=0$. Let $x=e_{1}$, where e_{1} is the "first" standard basis vector on \mathbb{R}^{n}, i.e. $e_{1}=(1,0,0, \ldots, 0)$. Since A is nilpotent, $\exists k \in \mathbb{N}^{+}$for which $A^{k}=0$. Clearly for any $m>k, A^{m}=0$ as well since $A^{m}=A^{k} A^{m-k}$. Then $A^{m} e_{1}=0 \forall m \geq k$. Since $\|\cdot\|_{2}$ is a norm, this means $\left\|A^{m} e_{1}\right\|_{2}=0 \forall m \geq k$. Moreover, $\left\|A^{n} e_{1}\right\|_{2} \geq 0 \forall n \in \mathbb{N}^{+}$, so by the definition of an infimum, $\inf _{n \in \mathbb{N}^{+}}\left\|A^{n} e_{1}\right\|_{2}=0$. This means that $\left\|A e_{1}\right\|_{2 \gamma}=0$, so $\|\cdot\|_{2 \gamma}$ is not a norm if A is nilpotent.
c. We have four conditions to prove to assure $\|\cdot\|_{2 \gamma}$ is a norm. In doing so, assume $\lambda \in \mathbb{R}, x, y \in \mathbb{R}^{n}$, and implicitly use the fact that $\|\cdot\|_{2}$ is a norm wherever necessary.
i) We first show that $\|A x\|_{2 \gamma}=0$ if $x=0$.

$$
\|A(0)\|_{2 \gamma}=\inf _{n \in \mathbb{N}^{+}}\left\|A^{n}(0)\right\|_{2}=\inf _{n \in \mathbb{N}^{+}} 0=0
$$

ii) Now assume that $\|A x\|_{2 \gamma}=0$ for some $x \in \mathbb{R}^{n}$ and we show that $x=0$. We have that

$$
\|A x\|_{2 \gamma}=\inf _{n \in \mathbb{N}^{+}}\left\|A^{n} x\right\|_{2}=0
$$

Since $\|\cdot\|_{2}$ is a function that maps only onto nonnegative values, and the infimum above is zero, we have that $\left\|A^{n} x\right\|_{2}=0 \forall n \in \mathbb{N}^{+}$, and $A^{n} x=0$. At the same time, $A^{n} \neq 0 \forall n \in \mathbb{N}^{+}$. The only possibility is that $x=0$.
iii) We show that $\|\lambda A x\|_{2 \gamma}=|\lambda| \cdot\|A x\|_{2 \gamma}$, using the properties of the 2-norm and the hint provided:
$\|\lambda A x\|_{2 \gamma}=\|A(\lambda x)\|_{2 \gamma}=\inf _{n \in \mathbb{N}^{+}}\left\|A^{n}(\lambda x)\right\|_{2 \gamma}=\inf _{n \in \mathbb{N}^{+}}|\lambda|\left\|A^{n} x| |=|\lambda| \inf _{n \in \mathbb{N}^{+}}\right\| A^{n} x\left|\|=|\lambda| \cdot\| A x \|_{2 \gamma}\right.$
iv) Finally we show that $\|A(x+y)\|_{2 \gamma} \leq\|A x\|_{2 \gamma}+\|A y\|_{2 \gamma}$:

$$
\|A(x+y)\|_{2 \gamma}=\inf _{n \in \mathbb{N}^{+}}\left\|A^{n} x+A^{n} y\right\|_{2}
$$

Note that we can use the Triangle Inequality on $\|\cdot\|_{2}$ to get $\left\|A^{n} x+A^{n} y\right\|_{2} \leq\left\|A^{n} x\right\|_{2}+$ $\left\|A^{n} y\right\|_{2}$ for each $n \in \mathbb{N}^{+}$. Essentially, the infimum over all $n \in \mathbb{N}^{+}$cannot decrease since no expression $\left\|A^{n} x\right\|_{2}+\left\|A^{n} y\right\|_{2}$ can be smaller than $\inf _{n \in \mathbb{N}^{+}}\left\|A^{n} x+A^{n} y\right\|_{2}$, so

$$
\inf _{n \in \mathbb{N}^{+}}\left\|A^{n} x+A^{n} y\right\|_{2} \leq \inf _{n \in \mathbb{N}^{+}}\left(\left\|A^{n} x\right\|_{2}+\left\|A^{n} x\right\|_{2}\right) \leq \inf _{n \in \mathbb{N}^{+}}\left\|A^{n} x\right\|_{2}+\inf _{n \in \mathbb{N}^{+}}\left\|A^{n} y\right\|_{2}=\|A x\|_{2 \gamma}+\|A y\|_{2 \gamma},
$$ as desired.

3 Solution to Problem 3

a. The left-hand approximation rule for solving ODEs is

$$
\int_{t}^{t+h} f(s, x(s)) d s \approx h f(t, x(t))
$$

For this problem, h is arbitrary, $t=0$, and $f(t, x(t))=5 e^{t}+x+t$, so the approximation scheme actually equals

$$
\begin{gathered}
x(t+h)-x(t) \approx h f(t, x(t)) \Rightarrow \\
x(h)-x(0) \approx h\left(5 e^{t}+x(t)+t\right) \Rightarrow \\
x(h)-1 \approx h(5+1) \Rightarrow \\
x(h) \approx 6 h+1
\end{gathered}
$$

b. First, plug in $f(t, x)$:

$$
\begin{aligned}
& x(t+h)=x(t)+\frac{h}{2}\left(5 e^{t}+x+t\right)+\frac{h}{2} f\left(t+h, x+h\left(5 e^{t}+x+t\right)\right) \Rightarrow \\
& x(t+h)=x(t)+\frac{5 h e^{t}}{2}+\frac{h x}{2}+\frac{t h}{2}+\frac{h}{2} f\left(t+h, x+5 h e^{t}+h x+t h\right)
\end{aligned}
$$

We need to use two-dimensional Taylor on $f\left(t+h, x+\left(5 h e^{t}+h x+t h\right)\right)$. As we only need the first-order partial derivatives, we expand as follows:

$$
f\left(t+h, x+\left(5 h e^{t}+h x+t h\right)\right) \approx f(t, x)+h \frac{\partial f}{\partial t}+\left(5 h e^{t}+h x+t h\right) \frac{\partial f}{\partial x}
$$

Since we have an explicit formula for f, we compute the two partial derivatives explicitly:

$$
\begin{gathered}
\frac{\partial f}{\partial t}=5 e^{t}+x^{\prime}(t)+1=5 e^{t}+5 e^{t}+x+t+1=10 e^{t}+x+t+1 \\
\frac{\partial f}{\partial x}=1
\end{gathered}
$$

As a result,

$$
\begin{gathered}
f\left(t+h, x+\left(5 h e^{t}+h x+t h\right)\right) \approx 5 e^{t}+x+t+h\left(10 e^{t}+x+t+1\right)+\left(5 h e^{t}+h x+t h\right) \Rightarrow \\
f\left(t+h, x+\left(5 h e^{t}+h x+t h\right)\right) \approx 5 e^{t}+x+t+h+15 h e^{t}+2 h x+2 t h
\end{gathered}
$$

Substituting this back into the expression for $x(t+h)$ yields

$$
\begin{gathered}
x(t+h) \approx x(t)+\frac{5 h e^{t}}{2}+\frac{h x}{2}+\frac{t h}{2}+\frac{h}{2}\left(5 e^{t}+x+t+h+15 h e^{t}+2 h x+2 t h\right) \Rightarrow \\
x(t+h) \approx x(t)+5 h e^{t}+h x+t h+\frac{h^{2}}{2}+\frac{15 h^{2} e^{t}}{2}+h^{2} x+t h^{2}
\end{gathered}
$$

Since $t=0$ and $x=1$ for our ODE, this simplifies even further:

$$
\begin{gathered}
x(h) \approx 1+5 h e^{0}+h(1)+(0) h+\frac{h^{2}}{2}+\frac{15 h^{2} e^{0}}{2}+h^{2}(1)+0 h^{2} \Rightarrow \\
x(h) \approx 1+6 h+9 h^{2}
\end{gathered}
$$

4 Solution to Problem 4

a. A is a matrix of the form

$$
\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

Its eigenvalues are $\lambda_{1}, \lambda_{2}, \lambda_{3}$ (immediate). If they are all nonzero, then λ_{i} has a larger magnitude than the other values in row i for $i=1,2,3$, so the matrix is diagonally dominant, and we proved in lecture that Gauss-Seiden converges whenever the matrix A is diagonally dominant.
b. We proved in lecture that the Gauss-Seiden Method converges to the solution $A x=b$ if A is diagonally dominant. It is immediate by checking entries of the form $a_{i j}$ of A that A is diagonally dominant if and only if A^{T} is diagonally dominant. The lower triangular part of A becomes the upper triangular part of A^{T}, so we can essentially translate the solving of $A^{T} x=b$ using $Q=U+D$ of A^{T} to using Gauss-Seiden on $A x=b$.

