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1 Disclaimer

These problems do not necessarily reasonably represent the topics that could be on the actual exam.
I pulled ideas from the lecture notes and textbook in design of these problems.

2 Breaking The Maximum Principle

a. Consider the piecewise function u : R→ R such that

u(x) =

{
2x, x ≤ 3

2

3, x > 3
2

Using the Maximum Principle (for Laplace’s Equation) justify that u cannot be harmonic on
all of R.

b. Recall the strong maximum principle states that if the maximum of a harmonic function is
attained on the interior of a connected set then the function must be constant. Propose an alternative
argument if in fact the domain is convex.

3 Don’t be me and Make Careless Errors

Below I copy my solution to Problem 4a from Homework 2, but there is an error that completely
destroyed the validity of my proof. Can you find it?

There will either be zero solutions for the BVP or at least one. If there are zero solutions then
we are done. If there is at least one, we will show it is unique.

Let u, ũ be solutions of the BVP and we will demonstrate u = ũ. Let w := u − ũ. Then
ut = uxx and ũt = ũxx, so clearly

wt = wxx

and
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wxx − wt = 0⇒

wt(wt − wxx) = 0⇒

0 =

ˆ 1

0
wt(wt − wxx)dx =

ˆ 1

0
w2
t − wtwxxdx

Since wt = −wxx, the above implies

0 =

ˆ 1

0
w2
t dx+

ˆ 1

0
w2
xxdx =

ˆ 1

0
w2
t + w2

xxdx

The integrand is nonnegative so we must have w2
t +w2

xxdx = 0 for all (x, t) ∈ U . In particular
it follows that wt = wxx = 0 on U .

With this in mind we let

f(t) :=

ˆ 1

0
w(x, t)2dx

on t ∈ [0, T ]. In particular, the boundary conditions give

w(x, 0) = u(x, 0)− ũ(x, 0) = g(x)− g(x) = 0

so f(0) = 0. Moreover, the integrand is smooth so we can differentiate under the integral sign:

f ′(t) =

ˆ 1

0
2wwtdx

But we proved wt = 0 on U , so f ′(t) = 0. This means that f(t) = 0 ∀t ∈ [0, T ]. In particular,
since w2 is a nonnegative integrand being integrated over (0, 1), we have that w2 = 0 on U , so w
is identically zero on U . From here we conclude u = û, as desired. �

4 Denying Compact Support to Initial Data

In utilizing Duhamel’s Principle to solve the nonhomogeneous boundary value problem{
ut −4u = f, (x, t) ∈ Rn × {t > 0}
u = 0, (x, t) ∈ Rn × {t = 0}

we verified in Evans that the following works as a solution if we assume that f ∈ C2,1(Rn ×
[0,∞) and compactly supported:

u(x, t) =

ˆ t

0

1

(4π(t− s))
n
2

ˆ
Rn

e
− |x−y|2

4(t−s) f(y, s)dyds
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Consider the following proposed method to generalize this solution to when f may not be
compactly supported (but still have the same differentiability). Show that f can be written as an
infinite sum of compactly supported functions, and discuss whether interchanging the resulting
infinite sum with the integrals above is justified.

5 An Infinity-Norm PDE

Let U ⊂ Rn be open and bounded with a C1 boundary. Let g ∈ C(Ū). Consider this boundary
value problem {

max1≤i≤n |(5u(x))i| = u(x)4, x ∈ U
u(x) = g(x), x ∈ ∂U

Clearly the zero function is a nonnegative solution to the BVP. Show it is the only nonnegative
solution.

6 Just an Exponential Away

Solve the following nonlinear PDE in R× R:
wwtt − w2

t − wwxx + w2
x = 0, x, t > 0

w(x, 0) = ln(x sin(x) + 2), x > 0, t = 0

wt(x, 0) = x2

2 + ln(x+ 1), x > 0, t = 0

Hint: use a smooth transformation to a linear PDE, see Evans 4.4.1.

7 The Cousin of Grönwall

Let φ ∈ C1([0,∞)). Let C,K > 0 be constants such that

φ(t) ≤ C +

ˆ t

0
Kφ(s)ds

for all t ≥ 0. Also assume that φ′(t) ≤ −Kφ(t) for all t > 0. Then show that for all t > 0,
φ(t) ≤ φ(0)eKt.
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8 The Evils of Weak Solutions

Consider the conservation law PDE known as Burgers’ Equation:
ut +

(
u2

2

)
x

= 0, (x, t) ∈ R× (0,∞)

u0(x) =

{
0, x < 0

1, x > 0

Along with that consider the function

u(x, t) =

{
0, x < 1

2 t

1, x > 1
2 t

a. Show that this u is a weak solution to the Burgers’ Equation initial value problem.

b. Show that this solution violates the entropy condition

f ′(u−) > s =
dx̂

dt
> f ′(u+)

somewhere along the shock curve. Explain heuristically in terms of shock wave diagrams why
this is an undesirable trait of the solution.
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