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1 Disclaimer

These problems do not necessarily reasonably represent the topics that could be on the actual exam.
I pulled ideas from the lecture notes and textbook in design of these problems.

2 Differentiating Under the Integral Sign with Unit Normals

a. Let U ⊂ Rn be an open, bounded set and let u ∈ C1(U). Prove that
ˆ
U
nu+Du · xdx =

ˆ
∂U
ux · νdS.

b. Now let w be a smooth function in Rn × R and show that for any t > 0, x0 ∈ Rn,

d

dt

ˆ
B(x0,t)

div(u)(x · ν)dS =

ˆ
B(x0,t)

div(u)
(
n+

∂2x

∂ν∂t

)
+ (x · ν)div(ut) +

n∑
i=1

uxixixidx

where div denotes divergence with respect to spatial dimensions only, and ν is a unit normal
vector.

Hint: Use part a with u = div(w) and U = B(x0, t). You will want to break the divergence
integrals into sums of n integrals and use the Leibniz Differentiation Rule somewhere. The point
of this problem is to practice unifying many of the multivariate calculus identities we’ve put to use
in class.

3 Abusing Linearity on Trigonometric-Exponential Models

Consider the boundary-value problem
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ut + utt − 2uxx = 0, (x, t) ∈ R× (0,∞)

u(x, 0) = sin(x) + x
2 , (x, t) ∈ (0,∞)× {t = 0}

u(x, 0) = sin(x), (x, t) ∈ (−∞, 0]× {t = 0}
ut(x, 0) = cos(x), (x, t) ∈ R× {t = 0}

Show that there exists a C2(R× (0,∞)) solution to this boundary value problem of the form

u(x, t) = A sin(x+ t) +B
√
te−

x2

4t + C
x√
t

ˆ ∞
0

e−
(x−y)2

4t dy

on R× (0,∞), where A,B,C are some real constants.
Hint: This PDE is the sum of two linear PDEs we have studied in the course. Decompose the

PDE and boundary conditions into two separate, linear BVPs with which you are more familiar.

4 Uniqueness of Perturbations of the Heat Equation

For any ε > 0, and a fixed X > 0, T > 0 consider the following boundary value problem.
(uε)t − (uε)xx + εuε = 0, (x, t) ∈ (0, X)× (0, T )

uε = 0, (x, t) ∈ (0, X)× {t = 0}
uε = 0, (x, t) ∈ (0, X)× {t = T}

We propose the following method to show uniqueness of Choose some nonnegative energy
function Eε(t) (in terms of ε) and show that there exists at most one solution uε ∈ C2([0, X] ×
[0, T ]) to the above boundary problem for any ε > 0. Then use a limiting argument to show the
following boundary value problem has at most one solution u ∈ C2([0, X]× [0, T ]):

ut − uxx = 0, (x, t) ∈ [0, X]× (0, T ]

u = 0, (x, t) ∈ (0, X)× {t = 0}
u = 0, (x, t) ∈ (0, X)× {t = T}
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