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PD and Continuum Mechanics

Motivation and Origins

Definition (Continuum Mechanics)

Continuum mechanics is a classical differential equation model used
to describe the interaction and movement of particles in a material

Features:
@ Comprises both solid and fluid mechanics
@ Assumes materials fill the entire body
@ Same makeup if material is divided into pieces
@ Adheres to Newton’s Second law (resulting in a PDE)
@ Prevalent in the 20th century study of solid mechanics



PD and Continuum Mechanics

Motivation and Origins (continued)

Definition (Peridynamics)

Peridynamics (PD) is a nonlocal model for elasticity of solids that
uses integrals over derivatives, attributed to Stewart A. Silling

Features:
@ “Peri" means “near;" “dyna" means "force"

@ Exchanges derivatives in continuum models for integrals (helps
address crack formation)

@ Treats particles as having a bond between them
@ Range of interaction parameterized by §, called horizon
@ Material parameters represented by h(x) (e.g., density)



PD and Continuum Mechanics

Fundamental Equations of PD

Notation (Silling 2000)

@ L,: force per unit of reference volume

@ u: displacement [vector field]

@ f: particle interaction function

@ Q: range of possible interactions
Then forallt > 0, x € Q,

Ly(x,t) = /Q flu(x', t) — u(x,t), x" — x)dx’

If b € R" is the loading force density of an external force then




PD and Continuum Mechanics

Motivation and Origins

For our problem the nonlocal operator is

L) = 5 [ H(xjy)wou(x,y)dy

Nonlocal equations [or systems] take the form

Lu = f,xeQ
u=0xeQ5\Q

Common in solid state mechanics, including peridynamics
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Linear Theory

Banach and Hilbert Spaces

Definition (Banach Space)

A Banach space is a normed space (X, || - | x) that is complete

(where all Cauchy sequences have limits) )

Definition (Hilbert Space)

A Hilbert space is a Banach space (H, || - ||y) whose norm is induced
by an inner product (-, -), i.e., |u|3 = (u, u).

4
The space (L?(0,1), || - l12(0,1)) is @ Hilbert space with inner product
(u,v) = f01 u(x)v(x)dx.




Linear Theory

Coercivity and Boundedness

Definition (Bi-linear form)

A function b: H x H — R is a bi-linear form if it is linear in both
arguments.

M

Definition (Coercivity)

A bi-linear form b is coercive if 3o > 0 such that b(u, u) > «a|ul|3, for
allu e H.

M

Definition (Boundedness)

A linear form a: H — R is bounded (or continuous) if 3C5 > 0 such
that |a(u)| < Callul|y for all u € H. A bi-linear form b is bounded (or
continuous) if 3C > 0 such that |b(u, v)| < Cllul|y||v|| for all u,v € H.




Linear Theory

Lax-Milgram and Riesz Representation

Theorem (Riesz Representation Theorem)

If x* is a bounded linear functional on (H, || - ||y) with x* € H*, then
31z € H such that

xX*(x)=(x,z) VxeH

Corollary (Lax-Milgram Theorem)

Assume b : H x H — R is a bounded, coercive, bi-linear form. Then for
any ¢ € H*, then 3'u € H such that

b(u,v)={(p,v) VveH




Linear Theory

Uniqueness

Theorem (Classical Poisson Equation, c.f. Evans text)

Let f € C(Q). There exists at most one solution u € C?(Q) of

—Au(x)=f(x),x €Q
u(x) =0, x € 00

A
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Nonlocal Theory

What is an Integral Equation?

Definition (Integral Equation)

An integral equation is an equation that involves integral operators
rather than differential operators to measure [physical] quantities.

Example (Volterra Equations)
Volterra Equation of First Kind:

F(x) = /a " K(x, Do(t)dt

Volterra Equation of Second Kind:

o(x) = f(x) + /\/X K(x, t)e(t)dt

a

y

Stochastic variants appear in actuarial science, namely in ruin theory

14




What is the Fractional Laplacian?

Definition (Fractional Laplacian)
For s € (0,1), define

(=2)°u(x) == c(n, s) /Rn 2u(x) — U(Tyﬁﬁs_ u(x — y) ’

Definition (Classical Laplacian)

& u e
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Nonlocal Theory

What are Fractional Sobolev Spaces?

Definition (Fractional Sobolev Space)
Forp € [1,00), s € (0,1), we define

WeP(Q) = {ue e, =] ¢ o Q)}
x =yl

with norm

||U||Ws,p(Q) = </ |u|lf’dx-|-/Q . ’L|’§( ) — y| (Y)|d dy)

These are designed as Banach Spaces “between" LP(Q) and W'P(Q).

4




Nonlocal Theory

Classical Results: Fractional Sobolev Spaces

Proposition (Continuous Embedding)

Letpe[1,0),0<s<s <1,QcCR" be open, then
3C = C(n, s, p) > 1 such that

“U“WS’P(Q) < C”U”WSI»P(Q)

.

Proposition (Extension)

LetQ C R" be open, u € WSP(Q). If there is a compact K C Q such
that u = 0 in Q\ K, then the extension u of u by zero on R" \ Q2 satisfies

[Ullwspeny < Cllullwseq)

.

NOTE: There are other domains where extensions take place, but
finding a characterization is an open problem!



Nonlocal Theory

Uniqueness

Theorem (Uniqueness for Fractional Laplace Equation)

Let f € L3(Q). There exists a unique solution u € H$(S) of

-
for all w € H§(R).

NOTE: H$(Q) = W;3*?(Q), zero boundary data!



Nonlocal Theory

Regularity Result

Theorem (Grubb 2015)

LetQ C R" be a domain for which 90Q € C*. If g € H'(Q2) for some
r > —s, then the solution to

(—A)Su(x) = g(x),x € Q
u(x) =0, xeR"\ Q

belongs to H*%(Q2), where 6 := min {s +r,d- e} for e > 0 arbitrarily
small. In fact, 3C > 0 such that

[ullpsto@) < CllGll Hr(0)-

NOTE: H(Q) = W"2(Q)



Nonlocal Theory

Generalizations of Singularities

The Fractional Laplacian is just one type of nonlocal operator!

2u(x) —u(x+y)—u(x—y)
‘y‘n+2s

(~A)u(x) = o(n,s) / dy

RN
Key aspects to carry over:
@ Possesses a singularity near origin
@ Singularity is radial and non-negative
@ Finiteness not dependent on [strong] differentiability of u
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Calculus of Variations

What is the Calculus of Variations?

Definition (Calculus of Variations)

The field of calculus of variations is the study of minimizing (or
maximizing) integral functionals over a certain function space.

Canonical example: let Q c R" be a bounded domain, find
u € WH1(Q; R™) that minimizes an objective functional

Flu] ::/Qf(x, u(x),szu(x))dx.

Sample questions:
@ What types of conditions do we want to assume on f?
@ When do minimizers exist, and when are they unique?
@ What is the regularity of minimizers (when they exist)?

DD



Calculus of Variations

Case Study: The Isoperimetric/lsovolumetric Problem

Leta, 8 >0, find u: [0,1] — R with u(0) = @« and u(1) = 3 that

minimizes
Flu] = /01 J1 + ()2t

while having the iso-perimeter constraint

/1 u(t)ydt=A
0

for some fixed A > 0.




Calculus of Variations

Sample Objective Functionals

Object Fitting:

(u) = /Q (U(X) — Ugs(X))P0x

where uges is the optimal shaping of a material in R3 to fit in a hole

Work: W = Fd from physics

(u,g) == /Q u(x) - g(x)dx

.

24




What is the Direct Method?

Let X be a complete metric space, F : X — R U {+o0} be the objective
functional satisfying two conditions:
@ Coercivity: If F[uj] < A for some sequence {yj}2y c Xand a
A € R, then {u,-}/?'i1 has a sub-sequence converging to some
ue X.
© Lower semi-continuity: If {Uj}fi1 C X is a sequence where
up — bin X, then Fu] < liminf;_, o F[u].
Any functional F satisfying these conditions has a minimizer in X!



Calculus of Variations

How to use/prove the Direct Method

@ Show objective functional is bounded from below

@ Pick a sequence of functions approaching the infimum

@ Use compactness properties to obtain suitable sub-sequence
@ Show limit of sub-sequence actually attains the infimum

@ Unigqueness: contradiction/convexity argument



Calculus of Variations

Abstract Minimization Result

Let Z,q be a nonempty, closed, bounded, and convex subset of Z. Let
S:Z — Y be a compact operator, and G : Y — R be lower
semi-continuous. Then the Banach Space optimization problem

min {f(g) — G(Sg)+%||g||§}

gEZad

has an optimal solution g. Furthermore, if \ > 0, and G and S are
linear on their respective domains, then there is a unique minimizer.

D7



Calculus of Variations

A Mountain Pass Theorem

Application of calculus of variations: prove existence of [non-trivial]
solutions to PDEs
Denote CQ :=R"\ Q

Theorem (Nonlocal Mountain Pass (Servadei-Valdinoci 2012))

Let K be a kernel so that if v(x) := min{|x|2,1}, then yK € L'(R").
Denote

Yo = {(9(x) ~ g(y))VK(x — y) € L2(E2"\ (CQ x CR)).g = 0 on CR}.

Then the following problem has a non-trivial solution on u € Yy:

L (w00 = )0 = ely)K(x = y)aey = | flx, w00

forall p € Y.




Calculus of Variations

What is Optimal Design?

Definition

Optimal design is a variational problem where a material is chosen to
adhere to a specific force-displacement behavior as closely as possible

Prototypical design (scalar-valued):
MiN(h uyetx X an fgé F(x',x, h,u)dx'dx
Ls(u) =1f(x)inQ, u=0inQs\Q

where Ls is a nonlocal operator (e.g., Fractional Laplacian over
95 X Qg)
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Gamma-Convergence

r-Convergence

Definition

We say that the family Es : L?(; R") — R U {+oo} I-converges
strongly in L2(Q;R") to Eo : L2(;R") — R U {+oc} (denoted E; = Eo)
if:

i) The liminf inequality: Assume u; — u strongly in L2(Q;R"). Then

Eo(u) < liminfs_,o+ Es(us)

ii) Recovery sequence property: For each u € L?(Q;R"), there exists
a sequence {us}s-o Where us — u strongly in L2(Q; R") and

limsups_,q+ Es(Us) < Eo(u)



Gamma-Convergence

Why I-Convergence?

If E; 1N Eo and {us}s-o C L2(Q;R™) is a recovery sequence such that
us — u strongly in L2(; R"), then

JimEs(us) = Eo(u).

@ Considers convergence of certain sequences
@ Direct method produces bounded sequences
@ Compactness results used to get convergent sub-sequences

@ Connects nonlocal problems to local problems (e.g. those on
Sobolev Spaces)



Gamma-Convergence

Example: I'-Convergence vs. Pointwise Convergence

Let Fy(x) := hxe~2™¢_ Then F, 5 F in R, defined as

lei x =
Fx)={ 2% 5X=0
0, x#0

However, {Fx}h~0 converges pointwise on R to the zero function.




Gamma-Convergence

Case Study: Phase Transitions

Figure: Image courtesy of wonderopolis.com

Let p: Q — [0, 1] represent a mixing of Fluid A and Fluid B in some
vessel (2 c R", n=2 or n = 3), 0 representing Fluid A only; 1
representing Fluid B only This constraint indicates proportion of fluids:

[ sode = < (0. 12

We look to find an equilibrium by minimizing a Gibbs energy

gm;@mwmm




Gamma-Convergence

Case Study: Phase Transitions (continued)

Definition (Double-well potential)

A double-well potential is an energy potential [function] that has two
minima.

If W, is a double-well, denote its minima as « and 3, want

v € («|Q], B8|R2]). For well-posedness, we try to minimize the surface
area between the two phases E, := {x € Q, p(x) = a},

Es :={x € Q, p(x) = p}. So we look to minimize the rescaled penalty
functional

Fu] = / W(u(x)) + e| 7 u(x)Rdx, u:Q — [-1,1]




Gamma-Convergence

Case Study: Phase Transitions (continued)

Definition (Perimeter)

The perimeter of a set is

Perq(E) := sup { Jedivedx, p € C1C(Q;Rd), el (@) < 1}

V.

Theorem (Modica-Mortola 1977)

We have F. 5 Fo in the strong L'(Q)-topology, where

2Perq({x € Q,u(x) = a}) [7 \/W(s)ds,
Folu] = J u e BV(Q2; {e, B}), Jq udx = 7;
+oo otherwise

M
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Overview of New Results

Notation

@ Let Q C R” be a bounded domain
@ Projected difference: Du(x, y) := % nonlocal
linearized strain (for vector-valued functions)

@ Kernel sequence {ks}s-0 radial, integrable, non-negative,
supported in B(0, §), ks(r)r—2 is non-increasing, and
fRn k5(£)d€ =1

@ Design function: H(x, y) := M) p e [oo(Q) h>0



Overview of New Results

Notation (continued)

For fixed § > 0:

Du(x,y)Dv(x, y)
X —y?

B(u,v) = /Q ; ks(x — y) dxdy
& 9

Du(x,y)Dv(x,y)
Ix —y|2

Buw.v) = [ [ Hooyhitx—y) axdly
X(Q5;R") = {u € L3(Q4;R"), B(u, u) < 0o}

Xo(Q(s;Rn) = {U e X,u=0in Q(S\Q}



Overview of New Results

Linear Theory

Lemma

The space X(Q; R") equipped with the norm

ullx@rmy = llull2i@rr + [Ulx@irn)

=

is a Hilbert Space, and so is Xo; here [u]x(qrn) = B(u, u)

Theorem (Existence and Uniqueness)

For any uy € 0X and g € L2(Q;R"), there exists a unique u € uy + Xo
such that the state system

Bp(u,w) = /Qg(x) - w(x)dx

is satisfied for all w € Xp.




Overview of New Results

41

Minimization Problem

Goal: find (T, g) € (Up + Xo(Qs; R™)) x L2(Q; R") minimizing
A
I(;(U, g) = / F(X, U(X))dX + EHQHEZ(Q;R")
Q
subjectto: A > 0, g € Zyg C L2(Q;R") and u € up + Xg solving

Bp(u,v) = /Qg(x) -v(x)dx Vv e Xy

Here g is an external force and u represents displacement




Overview of New Results

49

Minimization Problem (continued)

Take Z,4 to be a nonempty, closed, convex, and bounded subset of
L2(Q; R"), typically

Zyg = {a<z(x)<b1<i<n}
where a < b. Also, A > 0,g € Zyg C L2(;R"), u € Uy + Xo.
Assumptionson F: Q x R — R:

@ Forall v e R, x — F(x, v) is measurable
@ Forall x € Q, v— F(x, V) is continuous
Also need that Xo(Q; R") cC L2(Q;R")



Overview of New Results

Existence and Uniqueness of Minimizers

Theorem (Existence and Uniqueness of Minimizers)
There exists (U, g) € (Uy + Xo(Qs; R™)) x L2(Q; R") minimizing

A
lg(u,g):/QF(x, u(x))ox + 51191220 mny

where u € uy + Xy solves

h(u, v) /g x)dx Vv e Xp

This minimizer is unique if F is linear in its second argument:

F(x, au(x) + pv(x)) = aF(x,u(x)) + SF(x, v(x))




Overview of New Results

Convergence of Solutions

Theorem

Suppose {(Us, gs) }s~0 denotes the sequence of minimizers for the
functionals {Is}s-o. If s — U strongly in L2(Q; R") and g; — g weakly
in L2(Q; R™), then (&, g) is @ minimizer to a local optimal control
problem on W'2(Q; R™).

Notice {Us}s~0 have bounded semi-norm so compactness gives a u
Notice {gs}s-0 are bounded in L?(Q; R") so compactness gives a g

AAd
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