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PD and Continuum Mechanics

Motivation and Origins

Definition (Continuum Mechanics)
Continuum mechanics is a classical differential equation model used
to describe the interaction and movement of particles in a material

Features:
Comprises both solid and fluid mechanics
Assumes materials fill the entire body
Same makeup if material is divided into pieces
Adheres to Newton’s Second law (resulting in a PDE)
Prevalent in the 20th century study of solid mechanics
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PD and Continuum Mechanics

Motivation and Origins (continued)

Definition (Peridynamics)
Peridynamics (PD) is a nonlocal model for elasticity of solids that
uses integrals over derivatives, attributed to Stewart A. Silling

Features:
“Peri" means “near;" “dyna" means "force"
Exchanges derivatives in continuum models for integrals (helps
address crack formation)
Treats particles as having a bond between them
Range of interaction parameterized by δ, called horizon
Material parameters represented by h(x) (e.g., density)
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PD and Continuum Mechanics

Fundamental Equations of PD

Notation (Silling 2000)
Lu: force per unit of reference volume
u: displacement [vector field]
f : particle interaction function
Ω: range of possible interactions

Then for all t ≥ 0, x ∈ Ω,

Lu(x , t) =

∫
Ω

f (u(x ′, t)− u(x , t), x ′ − x)dx ′

If b ∈ Rn is the loading force density of an external force then

Lu(x , t) + b = 0
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PD and Continuum Mechanics

Motivation and Origins

For our problem the nonlocal operator is

Lu(x) =
1
2

∫
Ωδ

H(x , y)
kδ(x − y)

|x − y |2
Du(x , y)dy

Nonlocal equations [or systems] take the form{
Lu = f , x ∈ Ω

u = 0, x ∈ Ωδ \ Ω

Common in solid state mechanics, including peridynamics
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Linear Theory

Banach and Hilbert Spaces

Definition (Banach Space)
A Banach space is a normed space (X , ‖ · ‖X ) that is complete
(where all Cauchy sequences have limits)

Definition (Hilbert Space)
A Hilbert space is a Banach space (H, ‖ · ‖H) whose norm is induced
by an inner product 〈·, ·〉, i.e., ‖u‖2H = 〈u,u〉.

Example

The space (L2(0,1), ‖ · ‖L2(0,1)) is a Hilbert space with inner product

〈u, v〉 =
∫ 1

0 u(x)v(x)dx .
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Linear Theory

Coercivity and Boundedness

Definition (Bi-linear form)
A function b : H × H → R is a bi-linear form if it is linear in both
arguments.

Definition (Coercivity)

A bi-linear form b is coercive if ∃α > 0 such that b(u,u) ≥ α‖u‖2H for
all u ∈ H.

Definition (Boundedness)
A linear form a : H → R is bounded (or continuous) if ∃Ca > 0 such
that |a(u)| ≤ Ca‖u‖H for all u ∈ H. A bi-linear form b is bounded (or
continuous) if ∃C > 0 such that |b(u, v)| ≤ C‖u‖H‖v‖H for all u, v ∈ H.
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Linear Theory

Lax-Milgram and Riesz Representation

Theorem (Riesz Representation Theorem)
If x∗ is a bounded linear functional on (H, ‖ · ‖H) with x∗ ∈ H∗, then
∃!z ∈ H such that

x∗(x) = 〈x , z〉 ∀x ∈ H

Corollary (Lax-Milgram Theorem)
Assume b : H ×H → R is a bounded, coercive, bi-linear form. Then for
any ϕ ∈ H∗, then ∃!u ∈ H such that

b(u, v) = 〈ϕ, v〉 ∀v ∈ H
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Linear Theory

Uniqueness

Theorem (Classical Poisson Equation, c.f. Evans text)

Let f ∈ C(Ω). There exists at most one solution u ∈ C2(Ω) of{
−4 u(x) = f (x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
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Nonlocal Theory

What is an Integral Equation?

Definition (Integral Equation)
An integral equation is an equation that involves integral operators
rather than differential operators to measure [physical] quantities.

Example (Volterra Equations)
Volterra Equation of First Kind:

f (x) =

∫ x

a
K (x , t)ϕ(t)dt

Volterra Equation of Second Kind:

ϕ(x) = f (x) + λ

∫ x

a
K (x , t)ϕ(t)dt

Stochastic variants appear in actuarial science, namely in ruin theory
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Nonlocal Theory

What is the Fractional Laplacian?

Definition (Fractional Laplacian)
For s ∈ (0,1), define

(−4)su(x) := c(n, s)

∫
Rn

2u(x)− u(x + y)− u(x − y)

|y |n+2s dy

Definition (Classical Laplacian)

4u :=
n∑

i=1

∂2u
∂x2

i
,u ∈ C2(Ω)
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Nonlocal Theory

What are Fractional Sobolev Spaces?

Definition (Fractional Sobolev Space)
For p ∈ [1,∞), s ∈ (0,1), we define

W s,p(Ω) =

{
u ∈ Lp(Ω),

|u(x)− u(y)|
|x − y |

n
p +s

∈ Lp(Ω× Ω)

}

with norm

‖u‖W s,p(Ω) =

(∫
Ω
|u|pdx +

∫
Ω

∫
Ω

|u(x)− u(y)|
|x − y |

n
p +s

dxdy

) 1
p

These are designed as Banach Spaces “between" Lp(Ω) and W 1,p(Ω).
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Nonlocal Theory

Classical Results: Fractional Sobolev Spaces

Proposition (Continuous Embedding)

Let p ∈ [1,∞), 0 < s ≤ s′ < 1, Ω ⊂ Rn be open, then
∃C = C(n, s,p) ≥ 1 such that

‖u‖W s,p(Ω) ≤ C‖u‖W s′,p(Ω)

Proposition (Extension)
Let Ω ⊂ Rn be open, u ∈W s,p(Ω). If there is a compact K ⊂ Ω such
that u = 0 in Ω \K , then the extension ũ of u by zero on Rn \Ω satisfies

‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω)

NOTE: There are other domains where extensions take place, but
finding a characterization is an open problem!
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Nonlocal Theory

Uniqueness

Theorem (Uniqueness for Fractional Laplace Equation)

Let f ∈ L2(Ω). There exists a unique solution u ∈ Hs
0(Ω) of∫

Ω

∫
Ω

(u(x)− u(y))(w(x)− w(y))

|x − y |n+2s dxdy =

∫
Ω

f (x)w(x)dx

for all w ∈ Hs
0(Ω).

NOTE: Hs
0(Ω) = W s,2

0 (Ω), zero boundary data!
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Nonlocal Theory

Regularity Result

Theorem (Grubb 2015)
Let Ω ⊂ Rn be a domain for which ∂Ω ∈ C∞. If g ∈ H r (Ω) for some
r ≥ −s, then the solution to{

(−4)su(x) = g(x), x ∈ Ω

u(x) = 0, x ∈ Rn \ Ω

belongs to Hs+θ(Ω), where θ := min
{

s + r , 1
2 − ε

}
for ε > 0 arbitrarily

small. In fact, ∃C > 0 such that

‖u‖Hs+θ(Ω) ≤ C‖g‖H r (Ω).

NOTE: H r (Ω) = W r ,2(Ω)
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Nonlocal Theory

Generalizations of Singularities

The Fractional Laplacian is just one type of nonlocal operator!

(−4)su(x) = c(n, s)

∫
Rn

2u(x)− u(x + y)− u(x − y)

|y |n+2s dy

Key aspects to carry over:
Possesses a singularity near origin
Singularity is radial and non-negative
Finiteness not dependent on [strong] differentiability of u
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Calculus of Variations

What is the Calculus of Variations?

Definition (Calculus of Variations)
The field of calculus of variations is the study of minimizing (or
maximizing) integral functionals over a certain function space.

Canonical example: let Ω ⊂ Rn be a bounded domain, find
u ∈W 1,1(Ω;Rm) that minimizes an objective functional

F [u] :=

∫
Ω

f (x ,u(x),5u(x))dx .

Sample questions:
What types of conditions do we want to assume on f?
When do minimizers exist, and when are they unique?
What is the regularity of minimizers (when they exist)?
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Calculus of Variations

Case Study: The Isoperimetric/Isovolumetric Problem

Let α, β > 0, find u : [0,1]→ R with u(0) = α and u(1) = β that
minimizes

F [u] :=

∫ 1

0

√
1 + (u′(t))2dt

while having the iso-perimeter constraint∫ 1

0
u(t)dt = A

for some fixed A > 0.

23



Calculus of Variations

Sample Objective Functionals

Example
Object Fitting:

I(u) :=

∫
Ω

(u(x)− udes(x))2dx

where udes is the optimal shaping of a material in R3 to fit in a hole

Example
Work: W = Fd from physics

I(u,g) :=

∫
Ω

u(x) · g(x)dx
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Calculus of Variations

What is the Direct Method?

Let X be a complete metric space, F : X → R∪ {+∞} be the objective
functional satisfying two conditions:

1 Coercivity: If F [uj ] ≤ Λ for some sequence {uj}∞j=1 ⊂ X and a
Λ ∈ R, then {uj}∞j=1 has a sub-sequence converging to some
ū ∈ X .

2 Lower semi-continuity: If {uj}∞j=1 ⊂ X is a sequence where
uj → ū in X , then F [ū] ≤ liminfj→∞F [uj ].

Any functional F satisfying these conditions has a minimizer in X !
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Calculus of Variations

How to use/prove the Direct Method

Show objective functional is bounded from below
Pick a sequence of functions approaching the infimum
Use compactness properties to obtain suitable sub-sequence
Show limit of sub-sequence actually attains the infimum
Uniqueness: contradiction/convexity argument
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Calculus of Variations

Abstract Minimization Result

Theorem

Let Zad be a nonempty, closed, bounded, and convex subset of Z . Let
S : Z → Y be a compact operator, and G : Y → R be lower
semi-continuous. Then the Banach Space optimization problem

min
g∈Zad

{
f (g) := G(Sg) +

λ

2
‖g‖2Z

}
has an optimal solution ḡ. Furthermore, if λ > 0, and G and S are
linear on their respective domains, then there is a unique minimizer.
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Calculus of Variations

A Mountain Pass Theorem

Application of calculus of variations: prove existence of [non-trivial]
solutions to PDEs
Denote CΩ := Rn \ Ω

Theorem (Nonlocal Mountain Pass (Servadei-Valdinoci 2012))

Let K be a kernel so that if γ(x) := min{|x |2,1}, then γK ∈ L1(Rn).
Denote

Y0 := {(g(x)−g(y))
√

K (x − y) ∈ L2(R2n \ (CΩ×CΩ)),g = 0 on CΩ}.

Then the following problem has a non-trivial solution on u ∈ Y0:∫
Rn

∫
Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K (x − y)dxdy =

∫
Ω

f (x ,u(x))ϕ(x)dx

for all ϕ ∈ Y0.
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Calculus of Variations

What is Optimal Design?

Definition

Optimal design is a variational problem where a material is chosen to
adhere to a specific force-displacement behavior as closely as possible

Prototypical design (scalar-valued):{
min(h,u)∈H×X0

∫
Ωδ

∫
Ωδ

F (x ′, x ,h,u)dx ′dx
Lδ(u) = f (x) in Ω, u = 0 in Ωδ \ Ω

where Lδ is a nonlocal operator (e.g., Fractional Laplacian over
Ωδ × Ωδ)
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Gamma-Convergence

Γ-Convergence

Definition

We say that the family Eδ : L2(Ω;Rn)→ R ∪ {+∞} Γ-converges
strongly in L2(Ω;Rn) to E0 : L2(Ω;Rn)→ R ∪ {+∞} (denoted Eδ

Γ−→ E0)
if:
i) The liminf inequality: Assume uδ → u strongly in L2(Ω;Rn). Then

E0(u) ≤ liminfδ→0+Eδ(uδ)

ii) Recovery sequence property: For each u ∈ L2(Ω;Rn), there exists
a sequence {uδ}δ>0 where uδ → u strongly in L2(Ω;Rn) and

limsupδ→0+Eδ(uδ) ≤ E0(u)
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Gamma-Convergence

Why Γ-Convergence?

Proposition

If Eδ
Γ−→ E0 and {uδ}δ>0 ⊂ L2(Ω;Rn) is a recovery sequence such that

uδ → u strongly in L2(Ω;Rn), then

lim
δ→0+

Eδ(uδ) = E0(u).

Considers convergence of certain sequences
Direct method produces bounded sequences
Compactness results used to get convergent sub-sequences
Connects nonlocal problems to local problems (e.g. those on
Sobolev Spaces)
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Gamma-Convergence

Example: Γ-Convergence vs. Pointwise Convergence

Example

Let Fh(x) := hxe−2h2x2
. Then Fh

Γ−→ F in R, defined as

F (x) =

{
−1

2e−
1
2 , x = 0

0, x 6= 0

However, {Fh}h>0 converges pointwise on R to the zero function.
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Gamma-Convergence

Case Study: Phase Transitions

Figure: Image courtesy of wonderopolis.com

Let ρ : Ω→ [0,1] represent a mixing of Fluid A and Fluid B in some
vessel (Ω ⊂ Rn, n = 2 or n = 3), 0 representing Fluid A only; 1
representing Fluid B only This constraint indicates proportion of fluids:∫

Ω
ρ(x)dx = γ ∈ (0, |Ω|)

We look to find an equilibrium by minimizing a Gibbs energy

G[ρ] =

∫
Ω

W0(ρ(x))dx
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Gamma-Convergence

Case Study: Phase Transitions (continued)

Definition (Double-well potential)
A double-well potential is an energy potential [function] that has two
minima.

If W0 is a double-well, denote its minima as α and β, want
γ ∈ (α|Ω|, β|Ω|). For well-posedness, we try to minimize the surface
area between the two phases Eα := {x ∈ Ω, ρ(x) = α},
Eβ := {x ∈ Ω, ρ(x) = β}. So we look to minimize the rescaled penalty
functional

Fε[u] :=

∫
Ω

1
ε

W (u(x)) + ε| 5 u(x)|2dx , u : Ω→ [−1,1]
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Gamma-Convergence

Case Study: Phase Transitions (continued)

Definition (Perimeter)
The perimeter of a set is

PerΩ(E) := sup

{∫
E divϕdx , ϕ ∈ C1

C(Ω;Rd ), ‖ϕ‖L∞(Ω) ≤ 1

}

Theorem (Modica-Mortola 1977)

We have Fε
Γ−→ F0 in the strong L1(Ω)-topology, where

F0[u] =


2PerΩ({x ∈ Ω,u(x) = α})

∫ β
α

√
W (s)ds,

u ∈ BV (Ω; {α, β}),
∫

Ω udx = γ;

+∞ otherwise

36



Overview of New Results

Outline

1 PD and Continuum Mechanics

2 Linear Theory

3 Nonlocal Theory

4 Calculus of Variations

5 Gamma-Convergence

6 Overview of New Results

7 References

37



Overview of New Results

Notation

Let Ω ⊂ Rn be a bounded domain
Projected difference: Du(x , y) := (u(x)−u(y))·(x−y)

|x−y | , nonlocal
linearized strain (for vector-valued functions)
Kernel sequence {kδ}δ>0 radial, integrable, non-negative,
supported in B(0, δ), kδ(r)r−2 is non-increasing, and∫
Rn kδ(ξ)dξ = 1

Design function: H(x , y) := h(x)+h(y)
2 , h ∈ L∞(Ω),h > 0
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Overview of New Results

Notation (continued)

For fixed δ > 0:

B(u, v) :=

∫
Ωδ

∫
Ωδ

kδ(x − y)
Du(x , y)Dv(x , y)

|x − y |2
dxdy

Bh(u, v) :=

∫
Ωδ

∫
Ωδ

H(x , y)kδ(x − y)
Du(x , y)Dv(x , y)

|x − y |2
dxdy

X (Ωδ;Rn) := {u ∈ L2(Ωδ;Rn),B(u,u) <∞}

X0(Ωδ;Rn) := {u ∈ X ,u = 0 in Ωδ \ Ω}
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Overview of New Results

Linear Theory

Lemma
The space X (Ω;Rn) equipped with the norm

‖u‖X(Ω;Rn) := ‖u‖L2(Ω;Rn) + [u]X(Ω;Rn)

is a Hilbert Space, and so is X0; here [u]X(Ω;Rn) = B(u,u)
1
2

Theorem (Existence and Uniqueness)

For any u0 ∈ ∂X and g ∈ L2(Ω;Rn), there exists a unique u ∈ u0 + X0
such that the state system

Bh(u,w) =

∫
Ω

g(x) · w(x)dx

is satisfied for all w ∈ X0.

40



Overview of New Results

Minimization Problem

Goal: find (ū, ḡ) ∈ (u0 + X0(Ωδ;Rn))× L2(Ω;Rn) minimizing

Iδ(u,g) =

∫
Ω

F (x ,u(x))dx +
λ

2
‖g‖2L2(Ω;Rn)

subject to: λ > 0, g ∈ Zad ⊂ L2(Ω;Rn) and u ∈ u0 + X0 solving

Bh(u, v) =

∫
Ω

g(x) · v(x)dx ∀v ∈ X0

Here ḡ is an external force and ū represents displacement
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Overview of New Results

Minimization Problem (continued)

Take Zad to be a nonempty, closed, convex, and bounded subset of
L2(Ω;Rn), typically

Zad = {a ≤ zi(x) ≤ b,1 ≤ i ≤ n}

where a ≤ b. Also, λ > 0,g ∈ Zad ⊂ L2(Ω;Rn), u ∈ u0 + X0.
Assumptions on F : Ω× R→ R:

1 For all v ∈ R, x 7→ F (x , v) is measurable
2 For all x ∈ Ω, v 7→ F (x , v) is continuous

Also need that X0(Ω;Rn) ⊂⊂ L2(Ω;Rn)
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Overview of New Results

Existence and Uniqueness of Minimizers

Theorem (Existence and Uniqueness of Minimizers)

There exists (ū, ḡ) ∈ (u0 + X0(Ωδ;Rn))× L2(Ω;Rn) minimizing

Iδ(u,g) =

∫
Ω

F (x ,u(x))dx +
λ

2
‖g‖2L2(Ω;Rn),

where u ∈ u0 + X0 solves

Bh(u, v) =

∫
Ω

g(x) · v(x)dx ∀v ∈ X0

This minimizer is unique if F is linear in its second argument:

F (x , αu(x) + βv(x)) = αF (x ,u(x)) + βF (x , v(x))
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Overview of New Results

Convergence of Solutions

Theorem

Suppose {(ūδ, ḡδ)}δ>0 denotes the sequence of minimizers for the
functionals {Iδ}δ>0. If ūδ → ū strongly in L2(Ω;Rn) and ḡδ ⇀ ḡ weakly
in L2(Ω;Rn), then (ū, ḡ) is a minimizer to a local optimal control
problem on W 1,2(Ω;Rn).

Notice {ūδ}δ>0 have bounded semi-norm so compactness gives a ū
Notice {ḡδ}δ>0 are bounded in L2(Ω;Rn) so compactness gives a ḡ
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