Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence

An Optimal Control Problem in Peridynamics

Joshua M. Siktar University of Tennessee-Knoxville MATH 599: Seminar Talk

> February 2022 jsiktar@vols.utk.edu

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence

Outline

- Introduction and motivation
- Properties of our function spaces
- Existence and uniqueness for state equation
- Solving the minimization problem
- **5** Convergence of state equation as $\delta \rightarrow 0^+$
- 6 References

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
•0000000	000000000000	00000	000000000000	00000000

Outline

Introduction and motivation

- Properties of our function spaces
- Existence and uniqueness for state equation
- Solving the minimization problem
- 5 Convergence of state equation as $\delta
 ightarrow 0^+$
- 6 References

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
0000000	000000000000	00000	000000000000	00000000

Motivation and Origins

For our problem the nonlocal operator is

$$Lu(x) = \frac{1}{2} \int_{\Omega_{\delta}} H(x,y) \frac{k_{\delta}(x-y)}{|x-y|^2} Du(x,y) dy$$

Nonlocal equations [or systems] take the form

$$\begin{cases} Lu = f, x \in \Omega \\ u = 0, x \in \Omega_{\delta} \setminus \Omega \end{cases}$$

Common in solid state mechanics, including peridynamics

Motivation and Origins (continued)

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals over derivatives, attributed to Stewart A. Silling

Features:

- Exchanges derivatives in continuum models for integrals (helps address crack formation)
- Treats particles as having a bond between them
- Range of interaction parameterized by δ, called horizon
- Material parameters represented by h(x) (e.g., density)
- Operator is elliptic (not parabolic or hyperbolic)

Fractional Sobolev Space

For $s \in (0, 1)$, define the function space

$$W^{s,2}(\Omega) := \left\{ u \in L^2(\Omega), \frac{|u(x) - u(y)|}{|x - y|^{\frac{n}{2} + s}} \in L^2(\Omega \times \Omega) \right\}$$
(1.1)

with associated norm

$$\|u\|_{W^{s,2}(\Omega)} := \|u\|_{L^{2}(\Omega)} + \left(\int_{\Omega}\int_{\Omega}\frac{|u(x) - u(y)|^{2}}{|x - y|^{n+2s}}dxdy\right)^{\frac{1}{2}}.$$
 (1.2)

- Inspired as an intermediary between $L^2(\Omega)$ and $W^{1,2}(\Omega)$
- Theoretical properties inspire those for other nonlocal spaces (continuous embeddings, compactness, Hilbert space theory, etc.)

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
00000000	000000000000	00000	000000000000	00000000

Problem Statement

Find $(\bar{u}, \bar{g}) \in (u_0 + X_0) \times L^2$ such that

$$I_{\delta}(\bar{u},\bar{g}) = \min_{g \in L^2(\Omega;\mathbb{R}^n), u \in u_0 + X_0(\Omega;\mathbb{R}^n)} \left\{ \int_{\Omega} F(x,u(x)) dx + \frac{\lambda}{2} \|g\|_{L^2(\Omega;\mathbb{R}^n)}^2 \right\}$$

and *u* and *g* satisfy

$$egin{array}{lll} {\mathcal B}_h(u,w) \ = \ \int_\Omega g(x)\cdot w(x), \,\, w\in X_0. \end{array}$$

Here \bar{g} is a external force and \bar{u} represents displacement **NOTE:** Similar problems have been studied in one dimension!

Sample Candidate integrand

Grampk $= \left(x_{1} u(x) \right) = \left(u(x) - u \operatorname{des}(x) \right)^{2}$ where Uses is the optimal "shaping" of the material in space to fit in some hole - material HOLE

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
00000000				

High-Level Novelty

- Generalize well-studied results from scalars to vector-valued functions
- Address a wide range of singularities
- Overcome technical difficulties admitted by projected differences
- Extensive use of measure theory and linear analysis

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
0000000				

Goals

10

- Prove that solutions to the constraint equation exist and are unique
- Identify conditions on F where minimizers exist and are unique
- Consider behavior as $\delta \to \mathbf{0}^+$

Introduction	and	motivation
0000000		

Outline

- **Properties of our function spaces** 2

11

Notation and Properties of Kernels

- Let $\Omega \subset \mathbb{R}^n$ be a bounded domain
- Projected difference: Du(x, y) := (u(x)-u(y))·(x-y)/|x-y|, nonlocal linearized strain (for vector-valued functions)
- Kernel sequence $\{k_{\delta}\}_{\delta>0}$ radial, integrable, non-negative, supported in $B(0, \delta)$, $k_{\delta}(r)r^{-2}$ is nonincreasing

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
	000000000000			00000000

Properties of Kernel

The following also hold for all $\delta > 0$:

$$\int_{\mathbb{R}^n} k_{\delta}(\xi) d\xi = 1$$
$$\lim_{\delta \to 0^+} \int_{\mathbb{R}^n} k_{\delta}(\xi) d\xi = \delta_0$$
$$\lim_{\epsilon \to \infty} \int_{\mathbb{R}^n \setminus B(0,\epsilon)} k_{\delta}(\xi) d\xi = 0$$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
	000000000000			

Problem Statement (local part)

Local objective functional:

$$I_0(g,u) = \int_{\Omega} F(x,u(x)) dx + \frac{\lambda}{2} \|g\|_{L^2(\Omega;\mathbb{R}^n)}^2$$

Constraint: $u \in W^{1,2}(\Omega; \mathbb{R}^n)$ satisfying

$$\begin{cases} b_h(u,w) = \int_{\Omega} g(x) \cdot w(x) dx, \ w \in W_0^{1,2}(\Omega;\mathbb{R}^n) \\ u = u_0 \text{ in } \partial\Omega \end{cases}$$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
	00000000000			

Problem Statement (local part)

Local inner product:

$$b_h(u,v) := C(n) \int_{\Omega} h(x) (2\langle \operatorname{Sym}(\bigtriangledown u), \operatorname{Sym}(\bigtriangledown v) \rangle_F + \operatorname{div}(u) \operatorname{div}(v)) dx,$$

with $C(n) = \frac{1}{(n+2)(n+4)}$; admissible class of pairs for the local problem:

$$\begin{split} \mathcal{A}^{\mathsf{loc}} &:= \{ (v, f) \in \mathit{W}^{1,2}(\Omega; \mathbb{R}^n) \times \mathit{L}^2(\Omega; \mathbb{R}^n), \\ v \text{ solves local BVP for any } w \in \mathit{W}^{1,2}_0(\Omega; \mathbb{R}^n) \} \end{split}$$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
	00000000000			

Coefficient Function

Our coefficient function is

$$H(x,y) := \frac{h(x) + h(y)}{2},$$

where there exist h_{\min} , $h_{\max} > 0$ so $h_{\min} \le h \le h_{\max}$ on Ω .

Symmetry of k_{δ} allows us to use this representation

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
	000000000000			

Bi-linear Form

17

For fixed $\delta > 0$:

$$B(u,v) := \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} k_{\delta}(x-y) \frac{Du(x,y)Dv(x,y)}{|x-y|^2} dxdy$$
$$B_{h}(u,v) := \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} H(x,y)k_{\delta}(x-y) \frac{Du(x,y)Dv(x,y)}{|x-y|^2} dxdy$$

Function Spaces

Our function space is based on the forms B and B_h :

$$X(\Omega_{\delta};\mathbb{R}^n):=\{u\in L^2(\Omega_{\delta};\mathbb{R}^n), {\mathcal B}(u,u)<\infty\}$$

$$\partial X := \{ w |_{\Omega_{\delta} \setminus \Omega}, w \in X \}$$

$$X_0(\Omega_{\delta}; \mathbb{R}^n) := \{ u \in X, u = 0 \text{ in } \Omega_{\delta} \setminus \Omega \}$$

For $u_0 \in \partial X$, we define the translation

$$u_0 + X_0 = \{ v \in X, v |_{\Omega_\delta \setminus \Omega} = u_0 \}$$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
	000000000000			00000000

Hilbert Space

Lemma

The space $X(\Omega; \mathbb{R}^n)$ equipped with the norm

$$||u||_{X(\Omega;\mathbb{R}^n)} := ||u||_{L^2(\Omega;\mathbb{R}^n)} + [u]_{X(\Omega;\mathbb{R}^n)}$$

is a Hilbert Space, and so is X_0 ; here $[u]_{X(\Omega;\mathbb{R}^n)} = B(u, u)^{\frac{1}{2}}$

NOTE: Due to Sobolev Embeddings, need $d \le 3$ if we have p = 2

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
00000000	00000000000000	00000	000000000000	0000000

Hilbert Space (continued)

For completeness, let $\{u_k\}_{k=1}^{\infty} \subset X(\Omega; \mathbb{R}^n)$ be Cauchy. Then $L^2(\Omega; \mathbb{R}^n)$ gives a candidate limit *u*. On a sub-sequence,

$$\lim_{m \to \infty} k_{\delta}(x-y) \frac{|Du_{k_m}(x,y)|^2}{|x-y|^2} = k_{\delta}(x-y) \frac{|Du(x,y)|^2}{|x-y|^2}$$

Then by Fatou's Lemma,

$$[u]_{X(\Omega;\mathbb{R}^n)} \leq \operatorname{liminf}_{k \to \infty}[u_k]_{X(\Omega;\mathbb{R}^n)} < \infty$$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
0000000	00000000000000	00000	000000000000	00000000

Hilbert Space (continued)

Finally want $\lim_{k\to\infty} [u_k - u]_{X(\Omega;\mathbb{R}^n)} = 0$. Use that $\{u_k\}_{k=1}^{\infty}$ is Cauchy to see that for $j \in \mathbb{N}^+$ sufficiently large,

$$[U_k - U_j]_{X(\Omega;\mathbb{R}^n)} < \epsilon.$$

Then use Fatou's Lemma over *j* once more to conclude completeness.

Introduction and motivation

Properties of our function spaces Existence and uniqueness for state equation Solving the minimization problem Convergence

Extension Lemma on X_0

Lemma (Extension Lemma)

If $u \in X_0(\Omega_{\delta}; \mathbb{R}^n)$ and \widetilde{u} is the zero extension to \mathbb{R}^n then there exists a constant $C = C(\delta) > 0$ such that

$$[\widetilde{u}]_{X(B;\mathbb{R}^n)} \leq C \|u\|_{X(\Omega_{\delta};\mathbb{R}^n)}.$$

whenever B is an open set containing Ω_{δ} ; in particular, the constant is independent of B, and we may select $B := \mathbb{R}^n$.

The restriction to X_0 (instead of X) is crucial!

Poincaré Inequality

Theorem (Poincaré)

(Mengesha-Du 2014) There exists a $\delta_0 > 0$ and a constant $C(\delta_0) > 0$ such that for all $\delta \in (0, \delta_0]$ and $u \in L^2(\Omega_{\delta}; \mathbb{R}^n)$ vanishing on $\Omega_{\delta} \setminus \Omega$,

$$\|u\|_{L^2(\Omega;\mathbb{R}^n)}^2 \leq C(\delta_0) \int_{\Omega_\delta} \int_{\Omega_\delta} \frac{k_\delta(x-y) |Du(x,y)|^2}{|x-y|^2} dx dy.$$

The assumption of $k_{\delta}(r)r^{-2}$ being nonincreasing is needed here

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
		00000		00000000

Outline

- Introduction and motivation
- Properties of our function spaces
- Existence and uniqueness for state equation
- Solving the minimization problem
- 5 Convergence of state equation as $\delta
 ightarrow 0^+$
- 6 References

Existence-Uniqueness Result

Theorem (Existence and Uniqueness)

For any $u_0 \in \partial X$ and $g \in L^2(\Omega; \mathbb{R}^n)$, there exists a unique $u \in u_0 + X_0$ such that the state system is satisfied for all $w \in X_0$. Furthermore, we have the stability estimate

$$||u||_X \leq C(||\widetilde{u}||_X + ||g||_{X*})$$

for some C > 0 independent of δ , where \tilde{u} is an extension of u_0 to all of Ω_{δ} .

- Start with $u_0 = 0$
- Invoke Riesz Representation Theorem
- Prove stability estimate

The solution here is a variational solution!

Riesz Argument ($u_0 = 0$ **)**

Suppose $u_0 = 0$. Notice that X_0 (and X) is Hilbert with the norm

$$||u||_{H}^{2} := ||u||_{L^{2}(\Omega;\mathbb{R}^{n})}^{2} + B_{h}(u, u)$$

and this norm is equivalent to $\|\cdot\|_X$. By nonlocal Poincaré,

$$c \|u\|_{H}^{2} \leq B_{h}(u, u) \leq \|u\|_{H}^{2}.$$

Since $B_h(\cdot, \cdot)$ is an inner product on (X_0, B_h) , we may use Riesz to uniquely find *u* satisfying

$$B_h(u,w) = \int_{\Omega} w(x) \cdot g(x), \ \forall w \in X_0$$

for each $g \in X_0^*$.

Introduction and motivation Proper	rties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
		00000		

Riesz Argument ($u_0 \neq 0$ **)**

If \tilde{u} extends u_0 from Ω to Ω_{δ} then we find $v \in X_0$ uniquely determined by \tilde{u} such that

$$B_h(v,w) = \int_{\Omega} g(x) \cdot w(x) dx - B_h(\widetilde{u},w)$$

Then prove two different extensions give same solution

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
		00000		00000000

Stability

Since
$$u - \tilde{u} \in X_0$$
, we have

$$B_h(u,u-\widetilde{u}) = \int_{\Omega} g(u-\widetilde{u}) dx$$

Finish after recalling $\|\cdot\|_H$ and $\|\cdot\|_X$ are equivalent in X_0

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
			•••••	00000000

Outline

- Introduction and motivation
- Properties of our function spaces
- Existence and uniqueness for state equation
- Solving the minimization problem
 - Compactness
 - Direct method
- 5 Convergence of state equation as $\delta
 ightarrow 0^+$

6 References

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
0000000	000000000000	00000	000000000000000000000000000000000000000	00000000

Minimization Problem

Goal: find $(\bar{u}, \bar{g}) \in (u_0 + X_0(\Omega_{\delta}; \mathbb{R}^n)) \times L^2(\Omega; \mathbb{R}^n)$ minimizing

$$I_{\delta}(u,g) = \int_{\Omega} F(x,u(x)) dx + rac{\lambda}{2} \|g\|^2_{L^2(\Omega;\mathbb{R}^n)}$$

subject to: $\lambda > 0, \, g \in Z_{ad} \subset L^2(\Omega; \mathbb{R}^n)$ and $u \in u_0 + X_0$ solving

$$B_h(u,v) = \int_\Omega g(x) \cdot v(x) dx \quad \forall v \in X_0$$

Minimization Problem Setup

Take Z_{ad} to be a nonempty, closed, convex, and bounded subset of $L^2(\Omega; \mathbb{R}^n)$, typically

$$Z_{ad} = \{a \leq z_i(x) \leq b, 1 \leq i \leq n\}$$

where $a \leq b$. Also, $\lambda > 0$, $g \in Z_{ad} \subset L^2(\Omega; \mathbb{R}^n)$, $u \in u_0 + X_0$. Assumptions on $F : \Omega \times \mathbb{R} \to \mathbb{R}$:

- For all $v \in \mathbb{R}$, $x \mapsto F(x, v)$ is measurable
- **2** For all $x \in \Omega$, $v \mapsto F(x, v)$ is continuous

Will also prove $X_0(\Omega; \mathbb{R}^n) \subset L^2(\Omega; \mathbb{R}^n)$

Introduction and motivation Properties of our function spaces Existence and uniqueness for state equation

Solving the minimization problem Convergence

Abstract Minimization Result

Theorem

Let Z_{ad} be a nonempty, closed, bounded, and convex subset of Z. Let $S: Z \to Y$ be a compact operator, and $G: Y \to \mathbb{R}$ be lower semi-continuous. Then the Banach Space optimization problem

$$\min_{g\in \mathcal{Z}_{ad}}\left\{f(g) := G(\mathcal{S}g) + rac{\lambda}{2}\|g\|_Z^p
ight\}$$

has an optimal solution \overline{g} . Furthermore, if $\lambda > 0$, and G and S are linear on their respective domains, then there is a unique minimizer

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation 00000	Solving the minimization problem	Convergence
Compactness				

Main Compactness Result

Theorem (Compactness)

We have $X_0(\Omega; \mathbb{R}^n) \subset \mathcal{L}^2(\Omega; \mathbb{R}^n)$.

Definition (Local Compactness)

If *E* is a normed vector space, we call a continuous linear operator $T: E \to L^2(\mathbb{R}^n; \mathbb{R}^n)$ **locally compact** if the operator $R_K T: E \to L^2(\mathbb{R}^n; \mathbb{R}^n)$ defined via $R_K u := \mathbb{1}_K u$ is a compact operator for every compact subset $K \subset \mathbb{R}^n$.

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation 00000	Solving the minimization problem	Convergence
Compactness				

Compactness: Strategy

- Introduce new weighted nonlocal function space, prove Hilbert
- Introduce appropriate norm and inner product
- Prove convolution lemma for matrix-weighted operators
- Prove local compactness via totally bounded approach

• Think of
$$j(\xi) \leftrightarrow \frac{k_{\delta}(\xi)}{|\xi|^2}!$$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation 00000	Solving the minimization problem	Convergence
Compactness				

Compactness: Notation

Let $J(\xi) = \frac{\xi \otimes \xi}{|\xi|^2} j(\xi)$, where $j : \mathbb{R}^n \to [0, \infty]$ be non-negative kernel such that j(z) = j(-z) for all $z \in \mathbb{R}^n$, $j \notin L^1(\mathbb{R}^n)$, and

$$0 < \int_{\mathbb{R}^n} \min\{1, |z|^2\} j(z) dz < \infty$$

Bi-linear form:

$$\mathcal{E}_{j}(u,v) := \frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} J(x-y)(u(x)-u(y)) \cdot (v(x)-v(y)) dx dy$$

Introduction and motivation Properties of our function spaces Existence and uniqueness for state equation Solving the minimization problem Convergence

Compactness

Compactness: Notation (continued)

Energy space corresponding to \mathcal{E}_i :

$$\mathcal{D}^{j}(\mathbb{R}^{n};\mathbb{R}^{n}) := \left\{ u \in L^{2}(\mathbb{R}^{n};\mathbb{R}^{n}), \\ \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \left| (u(x) - u(y)) \cdot \frac{(x-y)}{|x-y|} \right|^{2} j(x-y) dx dy < \infty \right\}$$

If $\Omega \subset \mathbb{R}^n$ is open:

$$\mathcal{D}^{j}(\Omega;\mathbb{R}^{n}) := \{ u \in \mathcal{D}^{j}(\mathbb{R}^{n};\mathbb{R}^{n}), u = 0 \text{ on } \mathbb{R}^{n} \setminus \Omega \}$$

Lemma

For any $\Omega \subset \mathbb{R}^n$ open, the function space $\mathcal{D}^j(\Omega; \mathbb{R}^n)$ is a Hilbert space with the associated inner product

$$\langle u, v \rangle_{\mathcal{D}^{j}(\Omega;\mathbb{R}^{n})} := \mathcal{E}_{j}(u, v) + \langle u, v \rangle_{L^{2}(\Omega;\mathbb{R}^{n})},$$

which in turn induces a norm

$$\|u\|_{\mathcal{D}^{j}(\Omega;\mathbb{R}^{n})}^{2} = \mathcal{E}_{j}(u,u) + \|u\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2}$$

Proposition

If $\mathcal{D}^{j}(\mathbb{R}^{n};\mathbb{R}^{n}) \subset L^{2}(\mathbb{R}^{n};\mathbb{R}^{n})$ is a locally compact embedding, then $\mathcal{D}^{j}(\Omega;\mathbb{R}^{n}) \subset L^{2}(\Omega;\mathbb{R}^{n})$ is compact for every bounded and open $\Omega \subset \mathbb{R}^{n}$.

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation 00000	Solving the minimization problem	Convergence
Compactness				

Convolution Lemma

Lemma

Suppose $W \in L^1(\mathbb{R}^n; \mathbb{R}^{n \times n})$. Then the corresponding convolution operator $T_W : L^2(\mathbb{R}^n; \mathbb{R}^n) \to L^2(\mathbb{R}^n; \mathbb{R}^n)$ defined via

$$[T_W u]_i := \int_{\mathbb{R}^n} W_{i,\cdot}(x-y) \cdot u(y) dy = \sum_{j=1}^n \int_{\mathbb{R}^n} W_{i,j}(x-y) u_j(y) dy$$

for each $i \in \{1, 2, ..., n\}$, is locally compact.

Strategy: Young's Inequality for continuity, density argument, show if $M \subset L^2(\Omega; \mathbb{R}^n)$ is bounded then $T_W M$ is equi-continuous in L^2 sense

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation 00000	Solving the minimization problem	Convergence
Compactness				

Compactness Result Recap

Theorem

If $j : \mathbb{R}^n \to [0, \infty]$ is a non-negative kernel for which j(z) = j(-z) for all $z \in \mathbb{R}^n$ and $\int_{\mathbb{R}^n} \min\{1, |z|^2\} j(z) dz < \infty$, then the embedding $\mathcal{D}^j(\mathbb{R}^n; \mathbb{R}^n) \subset L^2(\mathbb{R}^n; \mathbb{R}^n)$ is locally compact.

NOTE: If $j \in L^1(\mathbb{R}^n)$, then $X_0(\Omega_{\delta}; \mathbb{R}^n) = L^2(\Omega_{\delta}; \mathbb{R}^n)!$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
0000000	000000000000	00000	00000000000000	00000000
Direct method				

Existence of Minimizers

Theorem (Existence of Minimizers)

There exists $\bar{g} \in L^2(\Omega; \mathbb{R}^n)$ minimizing

$$I_{\delta}(u,g) = \int_{\Omega} F(x,u(x)) dx + rac{\lambda}{2} \|g\|^2_{L^2(\Omega;\mathbb{R}^n)}$$

where $u \in u_0 + X_0$ solves

$$B_h(u,v) = \int_\Omega g(x) \cdot v(x) dx \quad \forall v \in X_0$$

Can use compactness to invoke abstract minimization results

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation 00000	Solving the minimization problem	Convergence
Direct method				

Uniqueness of Minimizers

Theorem (Uniqueness of Minimizers)

The minimizer that exists is unique if F is linear in its second argument:

$$F(x, \alpha u(x) + \beta v(x)) = \alpha F(x, u(x)) + \beta F(x, v(x))$$

for $\alpha, \beta \in \mathbb{R}$

Prove indirectly, using strict convexity of $g o \|g\|^2_{L^2(\Omega:\mathbb{R}^n)}$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
0000000	000000000000	00000	000000000000	•0000000

Outline

- Introduction and motivation
- Properties of our function spaces
- Existence and uniqueness for state equation
- Solving the minimization problem
- **5** Convergence of state equation as $\delta \rightarrow 0^+$

6 References

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
				0000000

Local and Nonlocal Energies

Define these for $u \in L^2(\Omega; \mathbb{R}^n)$:

$$E_{\delta}(u) := \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} H(x, y) k_{\delta}(x - y) \frac{|Du(x, y)|^2}{|x - y|^2} dx dy;$$

$$E_0(u) := \frac{1}{(n+2)(n+4)} \int_{\Omega} h(x) (2\|\operatorname{Sym}(\nabla u(x))\|_F^2 + \operatorname{div}(u(x))^2) dx$$

Take to be $+\infty$ when not well-defined

Minimization of Local Functional

Theorem

Suppose $\{(\bar{u_{\delta}}, \bar{g_{\delta}})\}_{\delta>0}$ denotes the sequence of minimizers for the functionals $\{I_{\delta}\}_{\delta>0}$. If $\bar{u_{\delta}} \to \bar{u}$ strongly in $L^2(\Omega; \mathbb{R}^n)$ and $\bar{g_{\delta}} \to \bar{g}$ weakly in $L^2(\Omega; \mathbb{R}^n)$, then (\bar{u}, \bar{g}) is a minimizer to the local optimal control problem.

Notice $\{\bar{u}_{\delta}\}_{\delta>0}$ have bounded semi-norm so compactness gives a \bar{u} Notice $\{\bar{g}_{\delta}\}_{\delta>0}$ are bounded in $L^2(\Omega; \mathbb{R}^n)$ so compactness gives a \bar{g} **Need minimizers to be preserved in limit!**

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
				00000000

Γ-Convergence

Definition

We say that the family $E_{\delta} : L^2(\Omega; \mathbb{R}^n) \to \mathbb{R} \cup \{+\infty\}$ **Γ-converges** strongly in $L^2(\Omega; \mathbb{R}^n)$ to $E_0 : L^2(\Omega; \mathbb{R}^n) \to \mathbb{R} \cup \{+\infty\}$ (denoted $E_{\delta} \xrightarrow{\Gamma} E_0$) if: i) The limit inequality: Assume $\mu \to \mu$ strongly in $L^2(\Omega; \mathbb{R}^n)$. The

i) The liminf inequality: Assume $u_{\delta} \rightarrow u$ strongly in $L^{2}(\Omega; \mathbb{R}^{n})$. Then

 $E_0(u) \leq \operatorname{liminf}_{\delta \to 0^+} E_{\delta}(u_{\delta})$

ii) **Recovery sequence property:** For each $u \in L^2(\Omega; \mathbb{R}^n)$, there exists a sequence $\{u_{\delta}\}_{\delta>0}$ where $u_{\delta} \to u$ strongly in $L^2(\Omega; \mathbb{R}^n)$ and

 $\operatorname{limsup}_{\delta \to 0^+} E_{\delta}(u_{\delta}) \leq E_0(u)$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
				00000000

Technical lemmas

Lemma (Quantitative *L*²-continuity)

Fix $\xi \in \mathbb{R}^n \setminus \{0\}$, and let $v \in W_0^{1,2}(\mathbb{R}^n; \mathbb{R}^n)$. Then we have

$$\int_{\mathbb{R}^n} \left| (v(y+\xi) - v(y)) \cdot \frac{\xi}{|\xi|} \right|^2 dy \le |\xi|^2 \|Sym(\bigtriangledown v)\|_{L^2(\mathbb{R}^n;\mathbb{R}^{n \times n})}^2$$

Lemma (Continuous Embedding)

There exists a $\delta_0 > 0$ such that for all $\delta \in (0, \delta_0)$,

 $\|\boldsymbol{v}\|_{\boldsymbol{X}(\Omega_{\delta};\mathbb{R}^{n})} \leq 2\|\boldsymbol{v}\|_{W^{1,2}(\Omega;\mathbb{R}^{n})}.$

That is, $W_0^{1,2}(\Omega; \mathbb{R}^n) \hookrightarrow X_0(\Omega_{\delta}; \mathbb{R}^n)$ for all $\delta > 0$ sufficiently small.

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
				00000000

Useful Integral Lemma

Lemma

For any $A \in \mathbb{R}^{n \times n}$ symmetric,

$$\frac{1}{\alpha(n)}\int_{\mathbb{S}^{n-1}}|\langle A\omega,\omega\rangle|^2d\sigma(\omega) = \frac{1}{(n+2)(n+4)}(2\|A\|_F^2 + \operatorname{Tr}(A)^2).$$

- Expand the inner product and square it
- Casework based on which indices of quadruple sum are equal
- Calculate each sum

Highlights: Recovery Sequence Proof

Use Taylor and symmetry of H, focus on controlling

$$C\int_{\Omega_{\delta}}\int_{\Omega_{\delta}}h(y)k_{\delta}(x-y)|x-y|dxdy;$$

$$\int_{\Omega_{\delta}} \int_{\Omega_{\delta}} h(y) k_{\delta}(x-y) \Big\langle \operatorname{Sym}(\bigtriangledown u(x)) \frac{x-y}{|x-y|}, \frac{x-y}{|x-y|} \Big\rangle^2 dx dy$$

Split first integral into cases: |x - y| > a, |x - y| < a, for a > 0 arbitrary

Handle second integral with Fubini, change of variables, integral lemma with $A := \text{Sym}(\nabla u(x))$

Recovery sequence is $u_{\delta} := u!$

Needed Compactness Result

Proposition (Mengesha-Du 2014 (p = 2**))**

Suppose $\{u_{\delta}\}_{\delta>0} \subset L^2(\Omega; \mathbb{R}^n)$ is a bounded family of vector fields such that

$$\sup_{\delta>0}\int_{\Omega_{\delta}}\int_{\Omega_{\delta}}k_{\delta}(x-y)\frac{|Du_{\delta}(x,y)|^{2}}{|x-y|^{2}}dxdy < \infty,$$

where $k_{\delta}(r)r^{-2}$ is nonincreasing; then the family has compact closure in $L^{2}(\Omega; \mathbb{R}^{n})$, and any limit point u belongs to $W^{1,2}(\Omega; \mathbb{R}^{n})$

Highlights: Lim-inf Inequality Proof

 $E_0(u) \leq \operatorname{liminf}_{\delta \to 0^+} E_{\delta}(u_{\delta})$

- Assume without loss of generality $\liminf_{\delta \to 0^+} E_{\delta}(u_{\delta}) < \infty$
- Use compactness, conclude limit point $u \in W^{1,2}(\Omega; \mathbb{R}^n)$
- Prove liminf inequality for the following forms of *h*: indicator functions; simple functions; non-negative L[∞](Ω) functions

Highlights: Lim-inf Inequality Proof (continued)

Liminf on $A \times \Omega$ for $h(x) = \chi_A(x)$:

$$\frac{1}{(n+2)(n+4)} \int_{A} 2\|\operatorname{Sym}(\nabla u(x))\|_{F}^{2} + \operatorname{div}(u(x))^{2} dx \leq \\ \operatorname{liminf}_{\delta \to 0^{+}} \int_{A} \int_{\Omega_{\delta}} k_{\delta}(x-y) \frac{|Du_{\delta}(x,y)|^{2}}{|x-y|^{2}} dx dy$$

Convolution approach: let $w_{\epsilon,\delta} := \eta_{\epsilon} * u_{\delta}$ and $w_{\epsilon} := \eta_{\epsilon} * u$, show $w_{\epsilon,\delta} \to w_{\epsilon}$ in $C^{1}(\bar{A}; \mathbb{R}^{n})$ as $\delta \to 0^{+}$.

Highlights: Lim-inf Inequality Proof (continued)

Intermediate step (using $h(x) = \chi_A(x)$):

$$\int_{A}\int_{\Omega}k_{\delta}(x-y)\frac{|Dw_{\epsilon,\delta}(x,y)|^{2}}{|x-y|^{2}}dxdy \leq \int_{A}\int_{\Omega}k_{\delta}(x-y)\frac{|Du_{\delta}(x,y)|^{2}}{|x-y|^{2}}dxdy$$

Send $\delta \rightarrow 0^+$ for fixed $\epsilon > 0$:

$$\frac{1}{(n+2)(n+4)} \int_{A} (2\|\operatorname{Sym}(\nabla w_{\epsilon})\|_{F}^{2} + \operatorname{div}(w_{\epsilon}(x))^{2} dx \leq \lim_{\delta \to 0^{+}} \int_{A} \int_{\Omega} k_{\delta}(x-y) \frac{|Dw_{\epsilon,\delta}(x,y)|^{2}}{|x-y|^{2}} dx dy$$

Finally send $\epsilon \rightarrow 0^+$, use Fatou

Preservation of Minimizers

Lemma

If $\{v_{\delta}\}_{\delta>0}$ is a sequence of minimizers for $\{E_{\delta}\}_{\delta>0}$ over $L^{2}(\Omega; \mathbb{R}^{n})$, v is a limit point of this sequence, and $E_{\delta} \xrightarrow{\Gamma} E_{0}$, then v is a minimizer of E_{0} on $L^{2}(\Omega; \mathbb{R}^{n})$. Finally,

$$\lim_{\delta\to 0^+} E_{\delta}(v_{\delta}) = E_0(v)$$

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
				00000000

Minimization with Source Term

Define these functionals on $L^2(\Omega; \mathbb{R}^n)$:

$$\widetilde{E_{\delta}}(u) := E_{\delta}(u) + \int_{\Omega} g(x) \cdot u(x) dx;$$

 $\widetilde{E_{0}}(u) := E_{0}(u) + \int_{\Omega} g(x) \cdot u(x) dx$

considering them to be $+\infty$ when not well-defined; then $\widetilde{E_{\delta}} \xrightarrow{\Gamma} \widetilde{E_0}$, and minimizers are still preserved

Tying Together Optimal Control

Since $(0, g) \in \mathcal{A}^{\delta}$ for each $\delta > 0$, we have $\widetilde{E_{\delta}}(\overline{u}_{\delta}) \leq 0$; rearrange and use nonlocal Poincaré to get

$$[\bar{u}_{\delta}]_{X(\Omega_{\delta};\mathbb{R}^{n})} \leq C \|\bar{g}_{\delta}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \leq M$$

Finally, for a given $(f, v) \in \mathcal{A}^{\mathsf{loc}}$,

$$I_0(ar{u},ar{g}) \leq \lim_{\delta o 0^+} I_\delta(ar{u}_\delta,ar{g}_\delta) \leq \lim_{\delta o 0^+} I_\delta(f,v_\delta) \leq I_0(f,v)$$

Introduction and motivation Pr	roperties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence
00000000 0	00000000000			

Outline

- Introduction and motivation
- Properties of our function spaces
- Existence and uniqueness for state equation
- Solving the minimization problem
- 5 Convergence of state equation as $\delta
 ightarrow 0^+$

6 References

Introduction and motivation	Properties of our function spaces	Existence and uniqueness for state equation	Solving the minimization problem	Convergence

Selected References

- H. Brezis, *Functional Analysis, Sobolev Spaces, and Partial Differential Equations*, Springer, 2011.
- G.B. Folland, *Real analysis. Modern techniques and their applications.* Wiley, New York, 1984
- T. Mengesha and Q. Du (2014), The bond-based peridynamic system with Dirichlet-type volume constraint, Proceedings of the Royal Society of Edinburgh, 144A, 161–186.

Selected References (continued)

- J. Munoz (2020), Local and nonlocal optimal control in the source, https://arxiv.org/pdf/2004.02794.pdf.
- A. C. Ponce (2004), An estimate in the spirit of Poincaré's inequality, *J. Eur. Math. Soc. (JEMS)*, 6:1–15.
- S. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. *J. of Mech. Phys. Solids* **48** (2001), 175–209.
- F. Troltzsch, *Optimal Control of Partial Differential Equations: Theory, Methods, and Applications*, American Mathematical Society, 2010.