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Motivation and Origins

For our problem the nonlocal operator is

Lu(x) =
1
2

∫
Ωδ

H(x , y)
kδ(x − y)

|x − y |2
Du(x , y)dy

Nonlocal equations [or systems] take the form{
Lu = f , x ∈ Ω

u = 0, x ∈ Ωδ \ Ω

Common in solid state mechanics, including peridynamics

4



Introduction and motivation Properties of our function spaces Existence and uniqueness for state equation Solving the minimization problem Convergence of state equation as δ → 0+ References

Motivation and Origins (continued)

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that
uses integrals over derivatives, attributed to Stewart A. Silling

Features:
Exchanges derivatives in continuum models for integrals (helps
address crack formation)
Treats particles as having a bond between them
Range of interaction parameterized by δ, called horizon
Material parameters represented by h(x) (e.g., density)
Operator is elliptic (not parabolic or hyperbolic)
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Fractional Sobolev Space

For s ∈ (0,1), define the function space

W s,2(Ω) :=

{
u ∈ L2(Ω),

|u(x)− u(y)|
|x − y | n2 +s ∈ L2(Ω× Ω)

}
(1.1)

with associated norm

‖u‖W s,2(Ω) := ‖u‖L2(Ω) +

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|x − y |n+2s dxdy
) 1

2

. (1.2)

Inspired as an intermediary between L2(Ω) and W 1,2(Ω)

Theoretical properties inspire those for other nonlocal spaces
(continuous embeddings, compactness, Hilbert space theory,
etc.)
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Problem Statement

Find (ū, ḡ) ∈ (u0 + X0)× L2 such that

Iδ(ū, ḡ) = min
g∈L2(Ω;Rn),u∈u0+X0(Ω;Rn)

{∫
Ω

F (x ,u(x))dx +
λ

2
‖g‖2

L2(Ω;Rn)

}

and u and g satisfy

Bh(u,w) =

∫
Ω

g(x) · w(x), w ∈ X0.

Here ḡ is a external force and ū represents displacement
NOTE: Similar problems have been studied in one dimension!
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Sample Candidate integrand
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High-Level Novelty

Generalize well-studied results from scalars to vector-valued
functions
Address a wide range of singularities
Overcome technical difficulties admitted by projected differences
Extensive use of measure theory and linear analysis

9



Introduction and motivation Properties of our function spaces Existence and uniqueness for state equation Solving the minimization problem Convergence of state equation as δ → 0+ References

Goals

Prove that solutions to the constraint equation exist and are
unique
Identify conditions on F where minimizers exist and are unique
Consider behavior as δ → 0+
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Notation and Properties of Kernels

Let Ω ⊂ Rn be a bounded domain
Projected difference: Du(x , y) := (u(x)−u(y))·(x−y)

|x−y| , nonlocal
linearized strain (for vector-valued functions)
Kernel sequence {kδ}δ>0 radial, integrable, non-negative,
supported in B(0, δ), kδ(r)r−2 is nonincreasing
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Properties of Kernel

The following also hold for all δ > 0:∫
Rn

kδ(ξ)dξ = 1

lim
δ→0+

∫
Rn

kδ(ξ)dξ = δ0

lim
ε→∞

∫
Rn\B(0,ε)

kδ(ξ)dξ = 0
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Problem Statement (local part)

Local objective functional:

I0(g,u) =

∫
Ω

F (x ,u(x))dx +
λ

2
‖g‖2

L2(Ω;Rn)

Constraint: u ∈W 1,2(Ω;Rn) satisfying{
bh(u,w) =

∫
Ω

g(x) · w(x)dx , w ∈W 1,2
0 (Ω;Rn)

u = u0 in ∂Ω
.
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Problem Statement (local part)

Local inner product:

bh(u, v) := C(n)

∫
Ω

h(x)(2〈Sym(5u),Sym(5v)〉F + div(u)div(v))dx ,

with C(n) = 1
(n+2)(n+4) ; admissible class of pairs for the local problem:

Aloc := {(v , f ) ∈W 1,2(Ω;Rn)× L2(Ω;Rn),

v solves local BVP for any w ∈W 1,2
0 (Ω;Rn)}
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Coefficient Function

Our coefficient function is

H(x , y) :=
h(x) + h(y)

2
,

where there exist hmin,hmax > 0 so hmin ≤ h ≤ hmax on Ω.

Symmetry of kδ allows us to use this representation
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Bi-linear Form

For fixed δ > 0:

B(u, v) :=

∫
Ωδ

∫
Ωδ

kδ(x − y)
Du(x , y)Dv(x , y)

|x − y |2
dxdy

Bh(u, v) :=

∫
Ωδ

∫
Ωδ

H(x , y)kδ(x − y)
Du(x , y)Dv(x , y)

|x − y |2
dxdy
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Function Spaces

Our function space is based on the forms B and Bh:

X (Ωδ;Rn) := {u ∈ L2(Ωδ;Rn),B(u,u) <∞}

∂X := {w |Ωδ\Ω,w ∈ X}

X0(Ωδ;Rn) := {u ∈ X ,u = 0 in Ωδ \ Ω}

For u0 ∈ ∂X , we define the translation

u0 + X0 = {v ∈ X , v |Ωδ\Ω = u0}
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Hilbert Space

Lemma
The space X (Ω;Rn) equipped with the norm

‖u‖X(Ω;Rn) := ‖u‖L2(Ω;Rn) + [u]X(Ω;Rn)

is a Hilbert Space, and so is X0; here [u]X(Ω;Rn) = B(u,u)
1
2

NOTE: Due to Sobolev Embeddings, need d ≤ 3 if we have p = 2
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Hilbert Space (continued)

For completeness, let {uk}∞k=1 ⊂ X (Ω;Rn) be Cauchy. Then L2(Ω;Rn)
gives a candidate limit u. On a sub-sequence,

lim
m→∞

kδ(x − y)
|Dukm (x , y)|2

|x − y |2
= kδ(x − y)

|Du(x , y)|2

|x − y |2

Then by Fatou’s Lemma,

[u]X(Ω;Rn) ≤ liminfk→∞[uk ]X(Ω;Rn) < ∞
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Hilbert Space (continued)

Finally want limk→∞[uk − u]X(Ω;Rn) = 0. Use that {uk}∞k=1 is Cauchy to
see that for j ∈ N+ sufficiently large,

[uk − uj ]X(Ω;Rn) < ε.

Then use Fatou’s Lemma over j once more to conclude
completeness.
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Extension Lemma on X0

Lemma (Extension Lemma)

If u ∈ X0(Ωδ;Rn) and ũ is the zero extension to Rn then there exists a
constant C = C(δ) > 0 such that

[ũ]X(B;Rn) ≤ C‖u‖X(Ωδ ;Rn).

whenever B is an open set containing Ωδ; in particular, the constant is
independent of B, and we may select B := Rn.

The restriction to X0 (instead of X ) is crucial!
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Poincaré Inequality

Theorem (Poincaré )

(Mengesha-Du 2014) There exists a δ0 > 0 and a constant C(δ0) > 0
such that for all δ ∈ (0, δ0] and u ∈ L2(Ωδ;Rn) vanishing on Ωδ \ Ω,

‖u‖2
L2(Ω;Rn) ≤ C(δ0)

∫
Ωδ

∫
Ωδ

kδ(x − y)|Du(x , y)|2

|x − y |2
dxdy .

The assumption of kδ(r)r−2 being nonincreasing is needed here
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Existence-Uniqueness Result

Theorem (Existence and Uniqueness)

For any u0 ∈ ∂X and g ∈ L2(Ω;Rn), there exists a unique u ∈ u0 + X0
such that the state system is satisfied for all w ∈ X0.
Furthermore, we have the stability estimate

‖u‖X ≤ C(‖ũ‖X + ‖g‖X∗)

for some C > 0 independent of δ, where ũ is an extension of u0 to all
of Ωδ.

Start with u0 = 0
Invoke Riesz Representation Theorem
Prove stability estimate

The solution here is a variational solution!
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Riesz Argument (u0 = 0)

Suppose u0 = 0. Notice that X0 (and X ) is Hilbert with the norm

‖u‖2
H := ‖u‖2

L2(Ω;Rn) + Bh(u,u)

and this norm is equivalent to ‖ · ‖X . By nonlocal Poincaré,

c‖u‖2
H ≤ Bh(u,u) ≤ ‖u‖2

H .

Since Bh(·, ·) is an inner product on (X0,Bh), we may use Riesz to
uniquely find u satisfying

Bh(u,w) =

∫
Ω

w(x) · g(x), ∀w ∈ X0

for each g ∈ X ∗0 .
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Riesz Argument (u0 6= 0)

If ũ extends u0 from Ω to Ωδ then we find v ∈ X0 uniquely determined
by ũ such that

Bh(v ,w) =

∫
Ω

g(x) · w(x)dx − Bh(ũ,w)

Then prove two different extensions give same solution
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Stability

Since u − ũ ∈ X0, we have

Bh(u,u − ũ) =

∫
Ω

g(u − ũ)dx

Finish after recalling ‖ · ‖H and ‖ · ‖X are equivalent in X0
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Minimization Problem

Goal: find (ū, ḡ) ∈ (u0 + X0(Ωδ;Rn))× L2(Ω;Rn) minimizing

Iδ(u,g) =

∫
Ω

F (x ,u(x))dx +
λ

2
‖g‖2

L2(Ω;Rn)

subject to: λ > 0, g ∈ Zad ⊂ L2(Ω;Rn) and u ∈ u0 + X0 solving

Bh(u, v) =

∫
Ω

g(x) · v(x)dx ∀v ∈ X0
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Minimization Problem Setup

Take Zad to be a nonempty, closed, convex, and bounded subset of
L2(Ω;Rn), typically

Zad = {a ≤ zi (x) ≤ b,1 ≤ i ≤ n}

where a ≤ b. Also, λ > 0,g ∈ Zad ⊂ L2(Ω;Rn), u ∈ u0 + X0.
Assumptions on F : Ω× R→ R:

1 For all v ∈ R, x 7→ F (x , v) is measurable
2 For all x ∈ Ω, v 7→ F (x , v) is continuous

Will also prove X0(Ω;Rn) ⊂⊂ L2(Ω;Rn)
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Abstract Minimization Result

Theorem

Let Zad be a nonempty, closed, bounded, and convex subset of Z . Let
S : Z → Y be a compact operator, and G : Y → R be lower
semi-continuous. Then the Banach Space optimization problem

min
g∈Zad

{
f (g) := G(Sg) +

λ

2
‖g‖p

Z

}
has an optimal solution ḡ. Furthermore, if λ > 0, and G and S are
linear on their respective domains, then there is a unique minimizer
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Compactness

Main Compactness Result

Theorem (Compactness)

We have X0(Ω;Rn) ⊂⊂ L2(Ω;Rn).

Definition (Local Compactness)

If E is a normed vector space, we call a continuous linear operator
T : E → L2(Rn;Rn) locally compact if the operator
RK T : E → L2(Rn;Rn) defined via RK u := 1K u is a compact operator
for every compact subset K ⊂ Rn.
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Compactness

Compactness: Strategy

Introduce new weighted nonlocal function space, prove Hilbert
Introduce appropriate norm and inner product
Prove convolution lemma for matrix-weighted operators
Prove local compactness via totally bounded approach

Think of j(ξ)↔ kδ(ξ)
|ξ|2 !

34



Introduction and motivation Properties of our function spaces Existence and uniqueness for state equation Solving the minimization problem Convergence of state equation as δ → 0+ References

Compactness

Compactness: Notation

Let J(ξ) = ξ⊗ξ
|ξ|2 j(ξ), where j : Rn → [0,∞] be non-negative kernel

such that j(z) = j(−z) for all z ∈ Rn, j /∈ L1(Rn), and

0 <

∫
Rn

min{1, |z|2}j(z)dz < ∞

Bi-linear form:

Ej (u, v) :=
1
2

∫
Rn

∫
Rn

J(x − y)(u(x)− u(y)) · (v(x)− v(y))dxdy
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Compactness

Compactness: Notation (continued)

Energy space corresponding to Ej :

Dj (Rn;Rn) := {u ∈ L2(Rn;Rn),∫
Rn

∫
Rn

∣∣∣∣(u(x)− u(y)) · (x − y)

|x − y |

∣∣∣∣2 j(x − y)dxdy <∞}

If Ω ⊂ Rn is open:

Dj (Ω;Rn) := {u ∈ Dj (Rn;Rn),u = 0 on Rn \ Ω}
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Compactness

Properties of Dj (Rn;Rn)

Lemma

For any Ω ⊂ Rn open, the function space Dj (Ω;Rn) is a Hilbert space
with the associated inner product

〈u, v〉Dj (Ω;Rn) := Ej (u, v) + 〈u, v〉L2(Ω;Rn),

which in turn induces a norm

‖u‖2
Dj (Ω;Rn) = Ej (u,u) + ‖u‖2

L2(Ω;Rn)

Proposition

If Dj (Rn;Rn) ⊂ L2(Rn;Rn) is a locally compact embedding, then
Dj (Ω;Rn) ⊂ L2(Ω;Rn) is compact for every bounded and open
Ω ⊂ Rn.
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Compactness

Convolution Lemma

Lemma

Suppose W ∈ L1(Rn;Rn×n). Then the corresponding convolution
operator TW : L2(Rn;Rn)→ L2(Rn;Rn) defined via

[TW u]i :=

∫
Rn

Wi,·(x − y) · u(y)dy =
n∑

j=1

∫
Rn

Wi,j (x − y)uj (y)dy

for each i ∈ {1,2, . . . ,n}, is locally compact.

Strategy: Young’s Inequality for continuity, density argument, show if
M ⊂ L2(Ω;Rn) is bounded then TW M is equi-continuous in L2 sense
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Compactness

Compactness Result Recap

Theorem

If j : Rn → [0,∞] is a non-negative kernel for which j(z) = j(−z) for all
z ∈ Rn and

∫
Rn min{1, |z|2}j(z)dz <∞, then the embedding

Dj (Rn;Rn) ⊂ L2(Rn;Rn) is locally compact.

NOTE: If j ∈ L1(Rn), then X0(Ωδ;Rn) = L2(Ωδ;Rn)!
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Direct method

Existence of Minimizers

Theorem (Existence of Minimizers)

There exists ḡ ∈ L2(Ω;Rn) minimizing

Iδ(u,g) =

∫
Ω

F (x ,u(x))dx +
λ

2
‖g‖2

L2(Ω;Rn),

where u ∈ u0 + X0 solves

Bh(u, v) =

∫
Ω

g(x) · v(x)dx ∀v ∈ X0

Can use compactness to invoke abstract minimization results
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Direct method

Uniqueness of Minimizers

Theorem (Uniqueness of Minimizers)

The minimizer that exists is unique if F is linear in its second
argument:

F (x , αu(x) + βv(x)) = αF (x ,u(x)) + βF (x , v(x))

for α, β ∈ R

Prove indirectly, using strict convexity of g → ‖g‖2
L2(Ω;Rn)
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Local and Nonlocal Energies

Define these for u ∈ L2(Ω;Rn):

Eδ(u) :=

∫
Ωδ

∫
Ωδ

H(x , y)kδ(x − y)
|Du(x , y)|2

|x − y |2
dxdy ;

E0(u) :=
1

(n + 2)(n + 4)

∫
Ω

h(x)(2‖Sym(5u(x))‖2
F + div(u(x))2)dx

Take to be +∞ when not well-defined
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Minimization of Local Functional

Theorem

Suppose {(ūδ, ḡδ)}δ>0 denotes the sequence of minimizers for the
functionals {Iδ}δ>0. If ūδ → ū strongly in L2(Ω;Rn) and ḡδ ⇀ ḡ weakly
in L2(Ω;Rn), then (ū, ḡ) is a minimizer to the local optimal control
problem.

Notice {ūδ}δ>0 have bounded semi-norm so compactness gives a ū
Notice {ḡδ}δ>0 are bounded in L2(Ω;Rn) so compactness gives a ḡ
Need minimizers to be preserved in limit!
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Γ-Convergence

Definition

We say that the family Eδ : L2(Ω;Rn)→ R ∪ {+∞} Γ-converges
strongly in L2(Ω;Rn) to E0 : L2(Ω;Rn)→ R ∪ {+∞} (denoted
Eδ

Γ−→ E0) if:
i) The liminf inequality: Assume uδ → u strongly in L2(Ω;Rn). Then

E0(u) ≤ liminfδ→0+Eδ(uδ)

ii) Recovery sequence property: For each u ∈ L2(Ω;Rn), there
exists a sequence {uδ}δ>0 where uδ → u strongly in L2(Ω;Rn) and

limsupδ→0+Eδ(uδ) ≤ E0(u)
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Technical lemmas

Lemma (Quantitative L2-continuity)

Fix ξ ∈ Rn \ {0}, and let v ∈W 1,2
0 (Rn;Rn). Then we have∫

Rn

∣∣∣∣(v(y + ξ)− v(y)) · ξ
|ξ|

∣∣∣∣2 dy ≤ |ξ|2‖Sym(5v)‖2
L2(Rn;Rn×n)

Lemma (Continuous Embedding)

There exists a δ0 > 0 such that for all δ ∈ (0, δ0),

‖v‖X(Ωδ ;Rn) ≤ 2‖v‖W 1,2(Ω;Rn).

That is, W 1,2
0 (Ω;Rn) ↪→ X0(Ωδ;Rn) for all δ > 0 sufficiently small.
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Useful Integral Lemma

Lemma

For any A ∈ Rn×n symmetric,

1
α(n)

∫
Sn−1
|〈Aω, ω〉|2dσ(ω) =

1
(n + 2)(n + 4)

(2‖A‖2
F + Tr(A)2).

Expand the inner product and square it
Casework based on which indices of quadruple sum are equal
Calculate each sum
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Highlights: Recovery Sequence Proof

Use Taylor and symmetry of H, focus on controlling

C
∫

Ωδ

∫
Ωδ

h(y)kδ(x − y)|x − y |dxdy ;

∫
Ωδ

∫
Ωδ

h(y)kδ(x − y)
〈

Sym(5u(x))
x − y
|x − y |

,
x − y
|x − y |

〉2
dxdy

Split first integral into cases: |x − y | > a, |x − y | < a, for a > 0
arbitrary
Handle second integral with Fubini, change of variables, integral
lemma with A := Sym(5u(x))
Recovery sequence is uδ := u!

48



Introduction and motivation Properties of our function spaces Existence and uniqueness for state equation Solving the minimization problem Convergence of state equation as δ → 0+ References

Needed Compactness Result

Proposition (Mengesha-Du 2014 (p = 2))

Suppose {uδ}δ>0 ⊂ L2(Ω;Rn) is a bounded family of vector fields
such that

sup
δ>0

∫
Ωδ

∫
Ωδ

kδ(x − y)
|Duδ(x , y)|2

|x − y |2
dxdy < ∞,

where kδ(r)r−2 is nonincreasing; then the family has compact closure
in L2(Ω;Rn), and any limit point u belongs to W 1,2(Ω;Rn)
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Highlights: Lim-inf Inequality Proof

E0(u) ≤ liminfδ→0+Eδ(uδ)

Assume without loss of generality liminfδ→0+Eδ(uδ) <∞
Use compactness, conclude limit point u ∈W 1,2(Ω;Rn)

Prove liminf inequality for the following forms of h: indicator
functions; simple functions; non-negative L∞(Ω) functions
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Highlights: Lim-inf Inequality Proof (continued)

Liminf on A× Ω for h(x) = χA(x):

1
(n + 2)(n + 4)

∫
A

2‖Sym(5u(x))‖2
F + div(u(x))2dx ≤

liminfδ→0+

∫
A

∫
Ωδ

kδ(x − y)
|Duδ(x , y)|2

|x − y |2
dxdy

Convolution approach: let wε,δ := ηε ∗ uδ and wε := ηε ∗ u, show
wε,δ → wε in C1(Ā;Rn) as δ → 0+.
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Highlights: Lim-inf Inequality Proof (continued)

Intermediate step (using h(x) = χA(x)):

∫
A

∫
Ω

kδ(x−y)
|Dwε,δ(x , y)|2

|x − y |2
dxdy ≤

∫
A

∫
Ω

kδ(x−y)
|Duδ(x , y)|2

|x − y |2
dxdy

Send δ → 0+ for fixed ε > 0:

1
(n + 2)(n + 4)

∫
A

(2‖Sym(5wε)‖2
F + div(wε(x))2dx ≤

lim
δ→0+

∫
A

∫
Ω

kδ(x − y)
|Dwε,δ(x , y)|2

|x − y |2
dxdy

Finally send ε→ 0+, use Fatou
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Preservation of Minimizers

Lemma

If {vδ}δ>0 is a sequence of minimizers for {Eδ}δ>0 over L2(Ω;Rn), v is
a limit point of this sequence, and Eδ

Γ−→ E0, then v is a minimizer of
E0 on L2(Ω;Rn). Finally,

lim
δ→0+

Eδ(vδ) = E0(v)
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Minimization with Source Term

Define these functionals on L2(Ω;Rn):

Ẽδ(u) := Eδ(u) +

∫
Ω

g(x) · u(x)dx ;

Ẽ0(u) := E0(u) +

∫
Ω

g(x) · u(x)dx

considering them to be +∞ when not well-defined; then Ẽδ
Γ−→ Ẽ0,

and minimizers are still preserved
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Tying Together Optimal Control

Since (0,g) ∈ Aδ for each δ > 0, we have Ẽδ(ūδ) ≤ 0; rearrange and
use nonlocal Poincaré to get

[ūδ]X(Ωδ ;Rn) ≤ C‖ḡδ‖L2(Ω;Rn) ≤ M

Finally, for a given (f , v) ∈ Aloc,

I0(ū, ḡ) ≤ lim
δ→0+

Iδ(ūδ, ḡδ) ≤ lim
δ→0+

Iδ(f , vδ) ≤ I0(f , v)
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