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Motivation and Origins

For our problem the nonlocal operator is

tue) = 5 [ Hoon) ST buge )y

Nonlocal equations [or systems] take the form

Lu = f,xeQ
u=0,xeQ\Q

Common in solid state mechanics, including peridynamics
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Motivation and Origins (continued)

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that
uses integrals over derivatives, attributed to Stewart A. Silling

Features:

@ Exchanges derivatives in continuum models for integrals (helps
address crack formation)

@ Treats particles as having a bond between them

@ Range of interaction parameterized by 4, called horizon
@ Material parameters represented by h(x) (e.g., density)
@ Operator is elliptic (not parabolic or hyperbolic)
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Fractional Sobolev Space

For s € (0, 1), define the function space
W2(Q) := {u € L%(), "ﬁ(xz;é’i{)' € L2(Q x Q)} (1.1)

with associated norm

| ) —u)P N
||UHWSv2(Q) = ||U||L2(Q)+ </Q de)(dy . (1.2)

@ Inspired as an intermediary between L?(Q) and W'2(Q)

@ Theoretical properties inspire those for other nonlocal spaces
(continuous embeddings, compactness, Hilbert space theory,
etc.)

F
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Problem Statement

Find (T, ) € (up + Xo) x L2 such that

geL2(RM), uc Uy +Xo (2;R")

Is(u,9) = min {/ F(x,u(x))dx + 5 ||g||L2 R")}
and u and g satisfy

= /Qg(x)-w(x), w e Xo.

Here g is a external force and U represents displacement
NOTE: Similar problems have been studied in one dimension!
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Sample Candidate integrand
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High-Level Novelty

@ Generalize well-studied results from scalars to vector-valued
functions

@ Address a wide range of singularities
@ Overcome technical difficulties admitted by projected differences
@ Extensive use of measure theory and linear analysis
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Goals

@ Prove that solutions to the constraint equation exist and are
unique

@ Identify conditions on F where minimizers exist and are unique
@ Consider behavioras § — 0"

10
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Notation and Properties of Kernels

@ Let 2 ¢ R" be a bounded domain

@ Projected difference: Du(x, y) := W nonlocal

linearized strain (for vector-valued functions)
@ Kernel sequence {ks}s~o radial, integrable, non-negative,
supported in B(0, 6), ks(r)r—2 is nonincreasing
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Properties of Kernel

1

The following also hold for all 6 > 0:

ks(€)d¢ = 1

RN

lim [ ks(€)de = o

6—0* RN

im / ks()dé = 0
€20 JRM\ B(0,¢)
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Problem Statement (local part)

Local objective functional:

A
b(.v) = [ Fix.u(0)de+ 50l azn

Constraint: u € W'2(Q; R") satisfying

ba(u,w) = [, 9(x)- w(x)dx, w e Wy2(Q;R")
u = UginoQ
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Problem Statement (local part)

Local inner product:

bp(u,v) := C(n /h 2(Sym(vu), Sym(vv)) e + div(u)div(v))ax,

with C(n) = ; admissible class of pairs for the local problem:

AloS = f(v,f) e W"3(Q;R") x L2(Q;R"),
v solves local BVP for any w € W, ?(Q; R")}

1
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Coefficient Function

Our coefficient function is

Hexy) = PR

where there exist Anin, Amax > 0 S0 Amin < A < Amax ON Q.

Symmetry of ks allows us to use this representation

16
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Bi-linear Form

For fixed 6 > 0:

Du(x, y)Dv(x,y)

X — P dxdy

B(u,v) = /Q A Ks(x — y)

Du(x, y)Dv(x,y)
X — y[?

By(u,v) = /Q [ Hx kst - y) dxdy
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Function Spaces

Our function space is based on the forms B and By:

X(Qs;R") == {u € L3(Qs;R™), B(u, u) < oo}
X :={wlg,\q, W € X}

Xo(Qs; RN :={ue X,u=0inQ; \ Q}

For uy € 0X, we define the translation

up+Xo = {veXx, V|Q5\Q = Up}

1
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Hilbert Space

The space X(€2; R™) equipped with the norm

ullx@rn = llUllz@rny + [U]x@rm

is a Hilbert Space, and so is Xo; here [u]x(qrm = B(U, u)%

NOTE: Due to Sobolev Embeddings, need d < 3 if we have p =2

1O
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Hilbert Space (continued)

For completeness, let {ux}3, C X(Q;R") be Cauchy. Then L2(Q; R")
gives a candidate limit u. On a sub-sequence,

|Du(x, y)?

1D (x. )P
/) x-yP

-y T Y

lim kg(X—
m—o0
Then by Fatou’s Lemma,

[U]X(Q;Rn) < Iiminfkﬁoo[uk]X(Q;Rn) < o
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Hilbert Space (continued)

Finally want limk_, oo [Uk — U] x(q;rr) = 0. Use that {ux}32 4 is Cauchy to
see that for j € N* sufficiently large,

[Uk — Ujlx@@rny < €

Then use Fatou’s Lemma over j once more to conclude
completeness.
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Extension Lemma on Xj

If u e Xo(Q25;R") and u is the zero extension to R" then there exists a
constant C = C(¢) > 0 such that

[Ulx@ry < Cllullxqs®n-

whenever B is an open set containing Qs in particular, the constant is
independent of B, and we may select B := R".

Lemma (Extension Lemma)

4

The restriction to Xj (instead of X) is crucial!
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Poincaré Inequality

Theorem (Poincaré )

(Mengesha-Du 2014) There exists a 6o > 0 and a constant C(éy) > 0
such that for all € (0, dg] and u € L?(Q5; R") vanishing on Qs \ Q,

ks(x — y)|Du(x, y)I?
U2 0mm < C(do) / / s dxdy.
I ||L2(Q,R) 0 e i e — y|2

The assumption of ks(r)r—2 being nonincreasing is needed here
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Existence-Uniqueness Result

Theorem (Existence and Uniqueness)

For any uy € 0X and g € L?(Q;R"), there exists a unique u € uy + Xo
such that the state system is satisfied for all w € X;.
Furthermore, we have the stability estimate

lullx < C(llullx + llgllx-)

for some C > 0 independent of 6, where u is an extension of uy to all
of Q5.

@ Startwithug =0
@ Invoke Riesz Representation Theorem
@ Prove stability estimate
The solution here is a variational solution!




Existence and uniqueness for state equation
00000

Riesz Argument (vy = 0)

Suppose up = 0. Notice that X (and X) is Hilbert with the norm

lullfy = llulZa@zn + Ba(u, u)

and this norm is equivalent to || - || x. By nonlocal Poincaré,

clulf < Bn(u,u) < [ulf.
Since By(-, ) is an inner product on (X, By), we may use Riesz to
uniquely find u satisfying

Bp(u,w) = /Qw(x) -g(x), Yw € Xo

for each g € Xj.
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Riesz Argument (uy # 0)

If U extends ug from Q to Q5 then we find v € X, uniquely determined
by u such that

/g x)dx — Bp(u, w)

Then prove two different extensions give same solution
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Stability

Since u — u € Xy, we have

Bp(u,u—1u) = /Qg(u—ﬂ)dx

Finish after recalling || - || and || - || x are equivalent in Xo
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0 Solving the minimization problem
@ Compactness
@ Direct method
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Minimization Problem

Goal: find (U, @) € (Up + Xo(Qs; R")) x L2(Q; R") minimizing
A
b(w.9) = [ Flxub)ax+ 3 lglqer
Q
subjectto: A > 0, g € Zyg C L2(;R") and u € up + Xo solving

h(U, v) /g x)dx Vv e Xy
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Minimization Problem Setup

Take Z;4 to be a nonempty, closed, convex, and bounded subset of
L2(Q; R™), typically

Zy = {a<zi(x)<b1<i<n}
where a < b. Also, A > 0,9 € Zyg C L2(;R™), u € Uy + Xo.
Assumptionson F: Q x R — R:
@ Forallv eR, x — F(x,v) is measurable
Q Forall x € Q, v— F(x,v) is continuous
Will also prove Xp(Q; R") cC L2(;R")
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Abstract Minimization Result

Theorem

Let Z,4 be a nonempty, closed, bounded, and convex subset of Z. Let
S:Z — Y be a compact operator, and G : Y — R be lower
semi-continuous. Then the Banach Space optimization problem

. L A P
min {f(0) = G(Sg) + 51912}

has an optimal solution g. Furthermore, if A\ > 0, and G and S are
linear on their respective domains, then there is a unique minimizer
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Compactness

Main Compactness Result

Theorem (Compactness)
We have X;(; R") cC L2(;R").

Definition (Local Compactness)

If E is a normed vector space, we call a continuous linear operator

T : E — L2(R";R") locally compact if the operator

RkT : E — L2(R";R") defined via Rxu := 1xu is a compact operator
for every compact subset K c R”".
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Compactness

Compactness: Strategy

@ Introduce new weighted nonlocal function space, prove Hilbert
@ Introduce appropriate norm and inner product

@ Prove convolution lemma for matrix-weighted operators

@ Prove local compactness via totally bounded approach

® Think of j(¢) < {51
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Compactness

Compactness: Notation

Let J(€) = $&54(€), where j : R” — [0, 00] be non-negative kernel
such that j(z) = j(—z) forall z € R", j ¢ L'(R"), and

0 < / min{1,|z2}j(2)dz < oo
RN

Bi-linear form:

v = 5 [ Joe= )0~ ur) - (v0x) = Vi)
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Compactness

Compactness: Notation (continued)

Energy space corresponding to &;:

D/(R™R") = {ue [B(R";R"),

[t - u-

If Q C R"is open:

2
S jx - yyaiay < )

DI(QR") = {ue D(R"R"),u=00nR"\Q}
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Compactness

Properties of D/(R"; R")

Lemma

For any Q c R" open, the function space D!(Q;R") is a Hilbert space
with the associated inner product

<U, V>D/(Q;]R") = gj(U, V) + <U, V>L2(Q;]R”)7

which in turn induces a norm

||U||2DI(Q;R”) = &(u,u) + HUH%Z(Q;R")

A

Proposition

IfD/(R"; R™) C L3(R"; R") is a locally compact embedding, then
DI(Q;R") C L2(Q; R") is compact for every bounded and open
QCR"

.
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Compactness

Convolution Lemma

Lemma

Suppose W < L'(R"; R"<"). Then the corresponding convolution
operator Ty, : L2(R"; R") — L?(R™; R") defined via

Twdly = [ Wilx=y)-updy =3 [ Witx=pu)oy
j=1

foreachie {1,2,...,n}, is locally compact.
o’

Strategy: Young’s Inequality for continuity, density argument, show if
M c L2(9;R") is bounded then Ty M is equi-continuous in L? sense
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Compactness

Compactness Result Recap

Ifj : R" — [0, <] is a non-negative kernel for which j(z) = j(—z) for all
zeR"and [;, min{1,|z?}j(z)dz < oo, then the embedding
DI(R™; R™) C L2(R™; R") is locally compact.

NOTE: If j € L!(R"), then Xo(Qs; R") = L2(Q; R")!
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Direct method

Existence of Minimizers

Theorem (Existence of Minimizers)

There exists g € L2(Q; R") minimizing
A
I(,9) = [ FOxuG)x -+ 3191Ex
Q
where u € uy + Xy solves

h(u, V) /g x)dx Vv e Xy

Can use compactness to invoke abstract minimization results
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Direct method

Uniqueness of Minimizers

Theorem (Uniqueness of Minimizers)

The minimizer that exists is unique if F is linear in its second
argument:

F(x,au(x)+ Bv(x)) = aF(x,u(x))+ BF(x, v(x))
fora, B € R

Prove indirectly, using strict convexity of g — Hngz(Q;Rn)
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e Convergence of state equation as 6 — 0™




Convergence

Local and Nonlocal Energies

Define these for u € L2(Q; R"):

|Du(x. y)

2
Exw) = [ [ Hocykotx- ) 2 ay

Ex(W) = (i a , POORISYm(SUGO) +iv(u(x))?)de

Take to be +o0o when not well-defined
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Minimization of Local Functional

Suppose {(Us, gs) }s>0 denotes the sequence of minimizers for the
functionals {Is}s-o. If Us — U strongly in L?(Q; R") and gs — g weakly
in L2(Q; R™), then (4, g) is a minimizer to the local optimal control
problem.

Notice {Us }s~0 have bounded semi-norm so compactness gives a u
Notice {gs}s-0 are bounded in L2(Q; R") so compactness gives a g
Need minimizers to be preserved in limit!
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r-Convergence

Definition

We say that the family E; : L?(Q;R") — R U {+occ} I-converges
strongly in L2(Q; R") to Ep : L2(;R") — R U {+o0} (denoted

Es L Ey) if:

i) The liminf inequality: Assume u; — u strongly in L2(Q; R"). Then

Eo(U) < liminfs_.o+ E§(U5)

i) Recovery sequence property: For each u € L?(Q;R"), there
exists a sequence {u;}s-o Where us — u strongly in L2(Q; R") and

limsups_,o+ Es(Us) < Eo(u)
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Technical lemmas

Lemma (Quantitative L?-continuity)

Fix & € R"\ {0}, and let v € W, ?(R";R"). Then we have

J.

Lemma (Continuous Embedding)

(vy +&) —v(y))-

dy < €121 Sym(7v) | gn oy

There exists a 6y > 0 such that for all § € (0, do),

[Vilxsrey < 2[VIIwr2@rn)-

That is, W, ?(Q; R") < Xo(Q5; R") for all § > 0 sufficiently small.
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Useful Integral Lemma

For any A € R"™" symmetric,

1

:
@/SH (A, w) Fdo(w) = Favrgy @IAIR + THAP).

@ Expand the inner product and square it
@ Casework based on which indices of quadruple sum are equal
@ Calculate each sum
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Highlights: Recovery Sequence Proof

Use Taylor and symmetry of H, focus on controlling

c /Q [y )bt = y)lx = vl

X—Yy X—y\2
/ | Ak y)(Symiu0) =2 K ey
Split first integral into cases: |[x —y| > a, |[x —y| < a fora>0
arbitrary
Handle second integral with Fubini, change of variables, integral
lemma with A := Sym(yu(x))
Recovery sequence is us := u!
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Needed Compactness Result

Proposition (Mengesha-Du 2014 (p = 2))

Suppose {us}s-o C L?(Q;R™) is a bounded family of vector fields
such that

1Dus(x, )2
su ks(Xx — y)———————dxdy < oo,
5>’3/95 o, BNy

where ks(r)r=2 is nonincreasing; then the family has compact closure
in L2(Q; R™), and any limit point u belongs to W'-2(Q; R")

v
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Highlights: Lim-inf Inequality Proof

Eo(U) < liminfs_,o+ Eg(U§)

@ Assume without loss of generality liminfs_ o+ Es(us) < oo
@ Use compactness, conclude limit point u € W'2(Q; R")

@ Prove liminf inequality for the following forms of h: indicator
functions; simple functions; non-negative L>°(Q2) functions




Convergence

Highlights: Lim-inf Inequality Proof (continued)

Liminf on A x Q for h(x) = xa(x):

1
(n+2)(n+4)

|iminfgﬁo+ / k(;(X — y)
AJQs

/ 2[|Sym(vu(x))|F + div(u(x))?dx <
A

| Dus(x, y)?

X —yF axdy

Convolution approach: let w, s := n. x us and w, := 7. * u, show
W.s — w.in C'(A;R") as § — 0*.
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Highlights: Lim-inf Inequality Proof (continued)

Intermediate step (using h(x) = xa(x)):

2
//k(;x y)‘DWeé(Xy dxdy < //k |D“““|’2)| dxdy

Send § — 01 for fixed € > 0:

(n+2)n+4)/ 2|Sym(vw.)||z + div(w.(x))?dx <

2
lim //k5 |DW€‘5(X ¥)| dxdy

6—0*t

Finally send ¢ — 07, use Fatou
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Preservation of Minimizers

Lemma

If {vs}s=0 is @ sequence of minimizers for { Es}s~o over L2(Q;R"), v is

a limit point of this sequence, and E; LN Eoy, then v is a minimizer of
Eo on L2(Q;R"). Finally,

lim Eg(V(;) = Eo(V)
6—0+
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Minimization with Source Term

Define these functionals on L2(Q; R"):
Es(u) = Eg(u)+/g(x)-u(x)dx;
Q

Eo(u) = Eo(u) + / 9(x) - u(x)ax

considering them to be +o0o when not well-defined; then E; L E,,
and minimizers are still preserved
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Tying Together Optimal Control

Since (0, g) € A° for each ¢ > 0, we have E;(Em) < 0; rearrange and
use nonlocal Poincaré to get

[Us]x@srry < CllGslle@ry < M

Finally, for a given (f,v) € A"°,

Ib(a,9) < lim I5(Us,85) < lim Is(f,vs) < h(f,v)
§—0+ §—0+
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