Grad School Journeys: Nonlocal Edition

Joshua Siktar
jsiktar@vols.utk.edu
Carnegie Mellon Math Club

T

THE UNIVERSITY OF
TENNESSEE
KNOXVILLE

MATHEMATICS

A Tribute to Emily Zhu

Bio:

- Graduated from CMU with BS, MS in Mathematics in 2019
- Former Math Club and CMIMC officer
- Former TA for Concepts of Math, Matrix Theory, Math Studies Analysis II
- PhD candidate in combinatorics at University of California, San Diego

A Tribute to Emily Zhu (continued)

The Barrow Neurological Foundation funds research grants and raises awareness for brain aneurysms and other neurological conditions:
https://supportbarrow.rallybound.org/tributes/emilyzhu
The Trevor Project provides crisis support for at-risk LGBTQIA+ youth:
https://give.thetrevorproject.org/emilyzhu
The San Diego Zoo Wildlife Alliance funds research and education efforts worldwide for conservation efforts:
https://give.classy.org/emilyzhu_sdzwa

Brief Bio

- Born in Washington, D.C. but grew up in Pittsburgh
- Competed in math competitions in middle/high school
- Attended Carnegie Mellon from Fall 2015 through Fall 2018
- B.S. Mathematics, minor in Philosophy
- Hobbies include: blogging, hiking, board/card games

Undergrad Adventures

- Joined Steven Miller's research team in number theory and combinatorics in 2016 (still working with him today)
- Traveled to San Diego and Columbus to present work
- Worked at Expii part-time for Po-Shen Loh in 2019/2020

Go Vols!

- Joined University of Tennessee's math department in August 2019
- Expected graduation Spring 2024
- Concentration: numerical partial differential equations and optimal control

Whether to go to grad school?

To help you decide...
(1) Get undergrad research or TA experience as a trial run
© Does your "dream job" require a higher degree?

- Do you enjoy being in a university environment?
- Do you want to concentrate on studying one problem (or family of related problems) for an extended period of time?
(0) Do you want to create new knowledge rather than just reusing or applying old knowledge?
Grad school is an investment of your time to unlock opportunities for your professional future

Advice on picking grad schools

(1) Focus on a program based on potential advisors, not the ranking!
(2) Don't be surprised if your research interests change

O Build mentor-mentee relationships now (good for letters of recommendation and a richer academic experience at CMU)
(Let location constrain you as little as possible, especially if coming right out of undergrad
(0) Aim for 8-10 programs of varying levels of competitiveness

Other advice for grad students

(1) Don't stay up until 3 AM anymore, not worth burning yourself out
(2) Think both in the short term and the long term for your research progress and other tasks

- Network early and often, build a LinkedIn/ResearchGate profile, travel to conferences when possible

Acknowledgments

- Thanks to my co-advisors Abner Salgado and Tadele Mengesha for their continued mentorship
- Thanks to Jason Howell and the CMU Math Club officers for coordinating the talk
- Thanks to NSF grant 2111228 for financial support
- Thanks to the CMU Math Department and Steven J. Miller for kickstarting my growth as a research mathematician
- Thanks to Alisa Chang for helping me compile information on Emily Zhu

What are nonlocal operators?

For our problem the nonlocal operator is

$$
\mathcal{L}_{\delta} u(x)=\frac{1}{2} \int_{\Omega_{\delta}} \mathfrak{A}(x, y) k_{\delta}(|x-y|) \frac{D u(x, y)}{|x-y|} \frac{y-x}{|x-y|} d y
$$

Nonlocal equations [or systems] take the form

$$
\left\{\begin{array}{l}
\mathcal{L}_{\delta} u=g, x \in \Omega \\
u=0, x \in \Omega_{\delta} \backslash \Omega
\end{array}\right.
$$

Common in solid state mechanics, including peridynamics

What is peridynamics?

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals over derivatives, attributed to Stewart A. Silling

Features:

- Exchanges derivatives in continuum models for integrals (helps address crack formation)
- Treats particles as having a bond between them (bond-based model)
- Range of interaction parameterized by δ, called horizon

Find $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \in X_{0} \times Z_{\text {ad }}$ such that

$$
I\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right)=\min _{g_{\delta} \in L^{2}, u_{\delta} \in X_{0}}\left\{\int_{\Omega} F\left(x, u_{\delta}(x)\right) d x+\frac{\lambda}{2} \int_{\Omega} \Gamma(x)|g(x)|^{2} d x\right\}
$$

over pairs $\left(u_{\delta}, g_{\delta}\right) \in X_{0} \times Z_{\text {ad }}$ that satisfy some state equation (exact form TBD)

$$
B_{\delta}\left(u_{\delta}, w_{\delta}\right)=\int_{\Omega} g_{\delta}(x) \cdot w_{\delta}(x), \forall w_{\delta} \in X_{0}
$$

where $\delta \geq 0$ is the degree of non-locality. Here $\overline{g_{\delta}}$ is an external force and $\overline{u_{\delta}}$ represents the displacement

Sample Candidate integrand

Example:

$$
F(x, u(x))=\left|u(x)-u_{\mathrm{des}}(x)\right|^{2}
$$

where $u_{\text {des }}$ is the optimal shape of the material in space to fit a predetermined hole as closely as possible

Material
(deformable)

Hole (fixed
shape)

Goals

- Show existence and uniqueness of minimizers
- Consider behavior as $\delta \rightarrow 0^{+}$
- Discretize via FEMs
- Study simultaneous limit as $\delta, h \rightarrow 0^{+}$(asymptotic compatibility)

Motivation and Origins

For our problem the nonlocal operator is

$$
\mathcal{L}_{\delta} u(x)=\frac{1}{2} \int_{\Omega_{\delta}} \mathfrak{A}(x, y) k_{\delta}(|x-y|) \frac{D u(x, y)}{|x-y|} \frac{y-x}{|x-y|} d y
$$

Nonlocal equations [or systems] take the form

$$
\left\{\begin{array}{l}
\mathcal{L}_{\delta} u=g, x \in \Omega \\
u=0, x \in \Omega_{\delta} \backslash \Omega
\end{array}\right.
$$

Common in solid state mechanics, including peridynamics

Motivation and Origins (continued)

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals over derivatives, attributed to Stewart A. Silling

Features:

- Exchanges derivatives in continuum models for integrals (helps address crack formation)
- Treats particles as having a bond between them (bond-based model)
- Range of interaction parameterized by δ, called horizon

Notation

- Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain, $\Omega_{\delta}:=\Omega \cup\{x, \operatorname{dist}(x, \partial \Omega)<\delta\}$
- $\Omega_{\delta} \backslash \Omega$ is non-local boundary
- $\mathcal{D}_{\delta}:=\left(\Omega \times \Omega_{\delta}\right) \cup\left(\Omega_{\delta} \times \Omega\right)$
- Projected difference: $D u(x, y):=\frac{(u(x)-u(y)) \cdot(x-y)}{|x-y|}$, nonlocal linearized strain (for vector-valued functions)
- Our material coefficient function is

$$
\mathfrak{A}(x, y):=\frac{\mathfrak{a}(x)+\mathfrak{a}(y)}{2}
$$

where there exist $a_{\min }, a_{\max }>0$ so $a_{\min } \leq \mathfrak{a} \leq a_{\max }$ on Ω_{δ}.

Properties of Kernels

Kernel sequence $\left\{k_{\delta}\right\}_{\delta>0} \subset L^{1}\left(\mathbb{R}^{n}\right)$ radial, integrable, non-negative, supported in $B(0, \delta)$ with

$$
\int_{\mathbb{R}^{n}} k_{\delta}(\xi) d \xi=1
$$

Example: Truncated fractional kernels of form $k_{\delta}(\xi) \sim \frac{1}{|\xi|^{n+2 s}}$

Bi-linear forms

Nonlocal bi-linear form:

$$
B_{\delta}(u, v):=\frac{1}{2} \iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x, y) k_{\delta}(x-y) \frac{D u(x, y)}{|x-y|} \frac{D v(x, y)}{|x-y|} d x d y
$$

Local bi-linear form:

$$
B_{0}(u, v):=C(n) \int_{\Omega} \mathfrak{a}(x)\left(2\langle\operatorname{Sym}(\nabla u), \operatorname{Sym}(\nabla v)\rangle_{F}+\operatorname{div}(u) \operatorname{div}(v)\right) d x
$$

with $C(n)=\frac{1}{(n+2)(n+4)}$
Inner products denoted $\langle\cdot, \cdot\rangle_{Y} ; L^{2}$-inner product denoted $\langle\cdot, \cdot\rangle$

Function Spaces

Our function space is based on B_{δ} :

$$
X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right):=\left\{\left.u\right|_{\Omega} \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right), B_{\delta}(u, u)<\infty\right\}
$$

Version with zero non-local boundary data:

$$
X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right):=\left\{u \in X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right), u=0 \text { in } \Omega_{\delta} \backslash \Omega\right\}
$$

These are Hilbert spaces!

Cost Functional Assumptions

$$
I(u, g):=\frac{1}{2}\left\|u-u_{\operatorname{des}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}+\frac{\lambda}{2}\|g\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}
$$

Here $Z_{\text {ad }}$ is a nonempty, closed, convex, and bounded subset of $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, taking the form

$$
Z_{\mathrm{ad}}:=\left\{z \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right), a \preceq z \preceq b\right\}
$$

Here $[a]_{i} \leq[b]_{i}$ for all $i \in\{1,2, \ldots, n\}$ with $a=\left([a]_{1}, \ldots,[a]_{n}\right)$ and $b=\left([b]_{1}, \ldots,[b]_{n}\right)$ being vector fields in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right), \lambda \geq 0$.

State equation is well-posed!

Theorem (Existence and Uniqueness for State Equation)

For any $g_{\delta} \in L^{2}$, there exists a unique $u_{\delta} \in X_{0}$ such that the state system

$$
B_{\delta}\left(u_{\delta}, w_{\delta}\right)=\left\langle g_{\delta}, w_{\delta}\right\rangle
$$

is satisfied for all $w_{\delta} \in X_{0}$. Furthermore, we have the stability estimate

$$
\left\|u_{\delta}\right\|_{x\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim\left\|g_{\delta}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)^{*}}
$$

for some constant independent of δ.

Minimization Problem

Goal: find $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \in X_{0} \times L^{2}$ minimizing

$$
I\left(u_{\delta}, g_{\delta}\right)=\frac{1}{2}\left\|u_{\delta}-u_{\operatorname{des}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}+\frac{\lambda}{2}\left\|g_{\delta}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}
$$

subject to: $\lambda \geq 0, g_{\delta} \in Z_{a d} \subset L^{2}$ and $\left(u_{\delta}, g_{\delta}\right) \in X_{0} \times L^{2}$ solving

$$
B_{\delta}\left(u_{\delta}, v_{\delta}\right)=\int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) d x \quad \forall v_{\delta} \in X_{0}
$$

Well-posedness of optimal control problem

Theorem (Well-posedness)

There exists $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \times Z_{\text {ad }}$ minimizing

$$
I\left(u_{\delta}, g_{\delta}\right)=\frac{1}{2}\left\|u_{\delta}-u_{\text {des }}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}+\frac{\lambda}{2}\left\|g_{\delta}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}
$$

where $\overline{u_{\delta}} \in X_{0}$ solves

$$
B_{\delta}\left(u_{\delta}, v_{\delta}\right)=\int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) d x \quad \forall v_{\delta} \in X_{0}
$$

Furthermore, if F is strictly convex or $\lambda>0$, then the minimizer is unique.
Use compactness to apply direct method

Non-local discrete problem statement

Find $\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right) \in X_{\delta, h} \times Z_{h}$ such that

$$
I\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right)=\min _{u_{\delta, h} \in X_{\delta, h,}, g_{\delta, h} \in Z_{h}} I\left(u_{\delta, h}, g_{\delta, h}\right),
$$

over pairs $\left(u_{\delta, h}, g_{\delta, h}\right) \in X_{\delta, h} \times Z_{h}$ that satisfy

$$
B_{\delta}\left(u_{\delta, h}, v_{\delta, h}\right)=\left\langle g_{\delta, h}, v_{\delta, h}\right\rangle, \quad \forall v_{\delta, h} \in X_{\delta, h} .
$$

Recap:

$$
I\left(u_{\delta, h}, g_{\delta, h}\right):=\frac{1}{2}\left\|u_{\delta, h}-u_{\mathrm{des}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}+\frac{\lambda}{2}\left\|g_{\delta, h}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}
$$

Notation

- Mesh family: $\left\{\mathscr{T}_{h}\right\}_{h>0}$ (discretizing Ω_{δ}) shape-regular and quasi-uniform
- Piecewise polynomials of degree m (with respect to our mesh):

$$
\mathcal{P}_{m}\left(T ; \mathbb{R}^{n}\right):=\left\{\sum_{\alpha \in \mathbb{N}_{0}^{n}: \sum_{i=1}^{n} \alpha_{i} \leq m} v_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid v_{\alpha} \in \mathbb{R}^{n},\left(x_{i}\right)_{i=1}^{n} \in T\right\}
$$

- Discretized state space:
$X_{\delta, h}:=\left\{w_{h} \in C^{0}\left(\overline{\Omega_{\delta}} ; \mathbb{R}^{n}\right)\left|w_{h}\right|_{T} \in \mathcal{P}_{1}\left(T ; \mathbb{R}^{n}\right) \forall T \in \mathscr{T}_{h}, w_{h}=0\right.$ on $\left.\Omega_{\delta} \backslash \Omega\right\}$
- Discretized control space: $Z_{h}:=\left\{\left.z_{h}\right|_{T} \in \mathcal{P}_{0}\left(T ; \mathbb{R}^{n}\right) \forall T \in \mathscr{T}_{h}\right\}$

Control Error Estimates

Theorem (Convergence of Controls)

Assume that $\overline{g_{\delta}}$ is the optimal control associated with the nonlocal continuous problem, and $\overline{g_{\delta, h}}$ be the discrete optimal control. Then we have the convergence

$$
\begin{aligned}
\left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2} \lesssim \omega(h) & +\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2} \\
& +\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2}
\end{aligned}
$$

State and Adjoint Error Estimates

Theorem (Full Norm Solution Convergence)

In the setting of our problem formulation,

$$
\begin{aligned}
&\left\|\overline{u_{\delta}}-\overline{u_{\delta, h}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim \omega(h)+ \\
& \inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+ \\
& \operatorname{vinf}_{\delta, h} \in X_{\delta, h} \\
& {\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) ;} ; }
\end{aligned}
$$

$$
\begin{aligned}
\left\|\overline{p_{\delta}}-\overline{p_{\delta, h}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim & \omega(h)+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{p_{h}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \\
& +\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta ;} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} .
\end{aligned}
$$

NOTE: $\omega(h)$ is a stability term from finite element approximations, i.e. $\lim _{h \rightarrow 0^{+}} \omega(h)=0$.

Links

- Link to my blog: https://medium.com/@joshuasiktar
- Link to paper preprint: https://arxiv.org/pdf/2304.09328.pdf
- Link to Linkedln: https://www.linkedin.com/in/joshuasiktar1/
- Link to Emily Zhu's webpage and source of photograph: https://mathweb.ucsd.edu/~e9zhu/

