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A Tribute to Emily Zhu

Bio:
Graduated from CMU with BS, MS in Mathematics in 2019
Former Math Club and CMIMC officer
Former TA for Concepts of Math, Matrix Theory, Math Studies Analysis II
PhD candidate in combinatorics at University of California, San Diego



A Tribute to Emily Zhu (continued)

The Barrow Neurological Foundation funds research grants and raises awareness
for brain aneurysms and other neurological conditions:
https://supportbarrow.rallybound.org/tributes/emilyzhu

The Trevor Project provides crisis support for at-risk LGBTQIA+ youth:
https://give.thetrevorproject.org/emilyzhu

The San Diego Zoo Wildlife Alliance funds research and education efforts
worldwide for conservation efforts:
https://give.classy.org/emilyzhu_sdzwa

https://supportbarrow.rallybound.org/tributes/emilyzhu
https://give.thetrevorproject.org/emilyzhu
https://give.classy.org/emilyzhu_sdzwa


Brief Bio

Born in Washington, D.C. but grew up in Pittsburgh
Competed in math competitions in middle/high school
Attended Carnegie Mellon from Fall 2015 through Fall 2018
B.S. Mathematics, minor in Philosophy
Hobbies include: blogging, hiking, board/card games



Undergrad Adventures

Joined Steven Miller’s research team in number theory and combinatorics in
2016 (still working with him today)
Traveled to San Diego and Columbus to present work
Worked at Expii part-time for Po-Shen Loh in 2019/2020



Go Vols!

Joined University of Tennessee’s math department in August 2019
Expected graduation Spring 2024
Concentration: numerical partial differential equations and optimal control



Whether to go to grad school?

To help you decide...
1 Get undergrad research or TA experience as a trial run
2 Does your “dream job" require a higher degree?
3 Do you enjoy being in a university environment?
4 Do you want to concentrate on studying one problem (or family of related

problems) for an extended period of time?
5 Do you want to create new knowledge rather than just reusing or applying

old knowledge?
Grad school is an investment of your time to unlock opportunities for your
professional future



Advice on picking grad schools

1 Focus on a program based on potential advisors, not the ranking!
2 Don’t be surprised if your research interests change
3 Build mentor-mentee relationships now (good for letters of recommendation

and a richer academic experience at CMU)
4 Let location constrain you as little as possible, especially if coming right out

of undergrad
5 Aim for 8-10 programs of varying levels of competitiveness



Other advice for grad students

1 Don’t stay up until 3 AM anymore, not worth burning yourself out
2 Think both in the short term and the long term for your research progress

and other tasks
3 Network early and often, build a LinkedIn/ResearchGate profile, travel to

conferences when possible
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What are nonlocal operators?

For our problem the nonlocal operator is

Lδu(x) = 1
2

ˆ
Ωδ

A(x , y)kδ(|x − y |)Du(x , y)
|x − y |

y − x
|x − y |dy

Nonlocal equations [or systems] take the form{
Lδu = g , x ∈ Ω
u = 0, x ∈ Ωδ \ Ω

Common in solid state mechanics, including peridynamics



What is peridynamics?

Definition (PD)
Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals
over derivatives, attributed to Stewart A. Silling

Features:
Exchanges derivatives in continuum models for integrals (helps address crack
formation)
Treats particles as having a bond between them (bond-based model)
Range of interaction parameterized by δ, called horizon



Problem Statement

Find (uδ, gδ) ∈ X0 × Zad such that

I(uδ, gδ) = min
gδ∈L2,uδ∈X0

{ˆ
Ω
F (x , uδ(x))dx + λ

2

ˆ
Ω

Γ(x)|g(x)|2dx
}
,

over pairs (uδ, gδ) ∈ X0 × Zad that satisfy some state equation (exact form TBD)

Bδ(uδ,wδ) =
ˆ

Ω
gδ(x) · wδ(x), ∀wδ ∈ X0.

where δ ≥ 0 is the degree of non-locality. Here gδ is an external force and uδ
represents the displacement



Sample Candidate integrand



Goals

Show existence and uniqueness of minimizers
Consider behavior as δ → 0+

Discretize via FEMs
Study simultaneous limit as δ, h→ 0+ (asymptotic compatibility)



Motivation and Origins

For our problem the nonlocal operator is

Lδu(x) = 1
2

ˆ
Ωδ

A(x , y)kδ(|x − y |)Du(x , y)
|x − y |

y − x
|x − y |dy

Nonlocal equations [or systems] take the form{
Lδu = g , x ∈ Ω
u = 0, x ∈ Ωδ \ Ω

Common in solid state mechanics, including peridynamics



Motivation and Origins (continued)

Definition (PD)
Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals
over derivatives, attributed to Stewart A. Silling

Features:
Exchanges derivatives in continuum models for integrals (helps address crack
formation)
Treats particles as having a bond between them (bond-based model)
Range of interaction parameterized by δ, called horizon



Notation

Let Ω ⊂ Rn be a bounded domain, Ωδ := Ω ∪ {x , dist(x , ∂Ω) < δ}
Ωδ \ Ω is non-local boundary
Dδ := (Ω× Ωδ) ∪ (Ωδ × Ω)
Projected difference: Du(x , y) := (u(x)−u(y))·(x−y)

|x−y | , nonlocal linearized strain
(for vector-valued functions)
Our material coefficient function is

A(x , y) := a(x) + a(y)
2 ,

where there exist amin, amax > 0 so amin ≤ a ≤ amax on Ωδ.



Properties of Kernels

Kernel sequence {kδ}δ>0 ⊂ L1(Rn) radial, integrable, non-negative, supported in
B(0, δ) with

ˆ
Rn

kδ(ξ)dξ = 1

Example: Truncated fractional kernels of form kδ(ξ) ∼ 1
|ξ|n+2s



Bi-linear forms

Nonlocal bi-linear form:

Bδ(u, v) := 1
2

¨
Dδ

A(x , y)kδ(x − y)Du(x , y)
|x − y |

Dv(x , y)
|x − y | dxdy

Local bi-linear form:

B0(u, v) := C(n)
ˆ

Ω
a(x)(2〈Sym(5u),Sym(5v)〉F + div(u)div(v))dx ,

with C(n) = 1
(n+2)(n+4)

Inner products denoted 〈·, ·〉Y ; L2-inner product denoted 〈·, ·〉



Function Spaces

Our function space is based on Bδ :

X (Ωδ;Rn) := {u|Ω∈ L2(Ω;Rn),Bδ(u, u) <∞}

Version with zero non-local boundary data:

X0(Ωδ;Rn) := {u ∈ X (Ωδ;Rn), u = 0 in Ωδ \ Ω}

These are Hilbert spaces!



Cost Functional Assumptions

I(u, g) := 1
2‖u − udes‖2

L2(Ω;Rn)+
λ

2 ‖g‖
2
L2(Ω;Rn)

Here Zad is a nonempty, closed, convex, and bounded subset of L2(Ω;Rn), taking
the form

Zad := {z ∈ L2(Ω;Rn), a � z � b}

Here [a]i ≤ [b]i for all i ∈ {1, 2, . . . , n} with a = ([a]1, . . . , [a]n) and
b = ([b]1, . . . , [b]n) being vector fields in L2(Ω;Rn), λ ≥ 0.



State equation is well-posed!

Theorem (Existence and Uniqueness for State Equation)

For any gδ ∈ L2, there exists a unique uδ ∈ X0 such that the state system

Bδ(uδ,wδ) = 〈gδ,wδ〉

is satisfied for all wδ ∈ X0. Furthermore, we have the stability estimate

‖uδ‖X(Ωδ ;Rn) . ‖gδ‖X(Ωδ ;Rn)∗

for some constant independent of δ.



Minimization Problem

Goal: find (uδ, gδ) ∈ X0 × L2 minimizing

I(uδ, gδ) = 1
2‖uδ − udes‖2

L2(Ω;Rn)+
λ

2 ‖gδ‖
2
L2(Ω;Rn)

subject to: λ ≥ 0, gδ ∈ Zad ⊂ L2 and (uδ, gδ) ∈ X0 × L2 solving

Bδ(uδ, vδ) =
ˆ

Ω
gδ(x) · vδ(x)dx ∀vδ ∈ X0



Well-posedness of optimal control problem

Theorem (Well-posedness)
There exists (uδ, gδ) ∈ X0(Ωδ;Rn)× Zad minimizing

I(uδ, gδ) = 1
2‖uδ − udes‖2

L2(Ω;Rn)+
λ

2 ‖gδ‖
2
L2(Ω;Rn),

where uδ ∈ X0 solves

Bδ(uδ, vδ) =
ˆ

Ω
gδ(x) · vδ(x)dx ∀vδ ∈ X0

Furthermore, if F is strictly convex or λ > 0, then the minimizer is unique.

Use compactness to apply direct method



Non-local discrete problem statement

Find (uδ,h, gδ,h) ∈ Xδ,h × Zh such that

I(uδ,h, gδ,h) = min
uδ,h∈Xδ,h, gδ,h∈Zh

I(uδ,h, gδ,h),

over pairs (uδ,h, gδ,h) ∈ Xδ,h × Zh that satisfy

Bδ(uδ,h, vδ,h) = 〈gδ,h, vδ,h〉, ∀vδ,h ∈ Xδ,h.

Recap:
I(uδ,h, gδ,h) := 1

2‖uδ,h − udes‖2
L2(Ω;Rn)+

λ

2 ‖gδ,h‖
2
L2(Ω;Rn)



Notation

Mesh family: {Th}h>0 (discretizing Ωδ) shape-regular and quasi-uniform
Piecewise polynomials of degree m (with respect to our mesh):

Pm(T ;Rn) :=


∑

α∈Nn
0 :
∑n

i=1
αi≤m

vαxα1
1 · · · xαn

n

∣∣∣∣∣∣∣ vα ∈ Rn, (xi )n
i=1 ∈ T


Discretized state space:
Xδ,h := {wh ∈ C0(Ωδ;Rn) | wh|T∈ P1(T ;Rn) ∀T ∈ Th,wh = 0 on Ωδ \ Ω}
Discretized control space: Zh := {zh|T∈ P0(T ;Rn) ∀T ∈ Th}



Control Error Estimates

Theorem (Convergence of Controls)

Assume that gδ is the optimal control associated with the nonlocal continuous
problem, and gδ,h be the discrete optimal control. Then we have the convergence

‖gδ − gδ,h‖2
L2(Ω;Rn) . ω(h) +

(
inf

vδ,h∈Xδ,h
[uδ − vδ,h]X(Ωδ ;Rn)

)2

+
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.



State and Adjoint Error Estimates

Theorem (Full Norm Solution Convergence)

In the setting of our problem formulation,

‖uδ − uδ,h‖X(Ωδ ;Rn) . ω(h) + inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(Ωδ ;Rn)+

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn);

‖pδ−pδ,h‖X(Ωδ ;Rn) . ω(h)+ inf
vδ,h∈Xδ,h

‖p̂h−vδ,h‖X(Ωδ ;Rn)+ inf
vδ,h∈Xδ,h

‖ûδ−vδ,h‖X(Ωδ ;Rn)

+ inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn).

NOTE: ω(h) is a stability term from finite element approximations, i.e.
limh→0+ ω(h) = 0.



Links

Link to my blog: https://medium.com/@joshuasiktar

Link to paper preprint: https://arxiv.org/pdf/2304.09328.pdf

Link to LinkedIn: https://www.linkedin.com/in/joshuasiktar1/

Link to Emily Zhu’s webpage and source of photograph:
https://mathweb.ucsd.edu/~e9zhu/

https://medium.com/@joshuasiktar
https://arxiv.org/pdf/2304.09328.pdf
https://www.linkedin.com/in/joshuasiktar1/
https://mathweb.ucsd.edu/~e9zhu/

