Recurrence relations within n-gap sequences for integer decompositions

A. Gilson H. Killen
N. Razek
L. Sulkin
ameliasg97@gmail.com hadley.killen@gmail.com nadia.razek97@gmail.com liza.sulkin@gmail.com

With S. Miller (Williams) and J. Siktar (CMU). sjm1@williams.edu jsiktar@andrew.cmu.edu

CANT, May 2019

Previous Work

Definition

The Fibonacci numbers are the sequence define by $F_{k}=F_{k-1}+F_{k-2}$ with initial conditions $F_{1}=1, F_{2}=1$.

Theorem (Zeckendorf, 1972)

Every positive integer n can be expressed uniquely as a sum $n=\sum_{k} a_{k} F_{k}$, where $a_{k} \in\{0,1\}$ and if $a_{i}=a_{j}=1$ for some $i<j$, then there is a k with $i<j<k$ such that $a_{k}=0$.

Theorem (Even Fibonacci Decompositions)

Every positive integer n can be expressed uniquely as a sum $n=\sum_{k} a_{k} F_{2 k}$, where $a_{k} \in\{0,1,2\}$ and if $a_{i}=a_{j}=2$ for some $i<j$, then there is a k with $i<j<k$ such that $a_{k}=0$.

Motivation

What happens when we look at integer decompositions for other sequences?

We look for an inherent relationship between the sequences and the conditions for unique decompositions, especially coefficients for multiplication and excluded terms.

PLRS

Definition (Miller, Wang, 2012)

A Positive Linear Recurrence Sequence (PLRS) is a sequence of integers $\left\{H_{n}\right\}_{n=1}^{\infty}$ with the following properties:
(1) There exist nonnegative integers L, c_{1}, \ldots, c_{L} such that:

$$
H_{n}=c_{1} H_{n-1}+c_{2} H_{n-2}+\ldots+c_{L} H_{n-L}
$$

where $L, c_{1}, c_{L}>0$.
(2) For $n \in[2, L]$, we have:

$$
H_{n}=c_{1} H_{n-1}+c_{2} H_{n-2}+\ldots+c_{n-1} H_{1}+1
$$

Theorem (Miller, Wang, 2012)

Let $\left\{H_{n}\right\}_{n=1}^{\infty}$ be a PLRS. Then for each positive integer $N>0$ there exists a unique legal decomposition dependent on N.

n-gap Sequences

Question: What happens when we look at every $\mathrm{n}^{\text {th }}$ term in the sequence? Can we still recover unique decompositions?

We will call these the n -gap (sub)sequences, where n is the distance between consecutive terms of the new sequence within the old sequence.

Definition

Let $\left\{G_{k}\right\}_{k=1}^{\infty}$ be an integer sequence and $n \in \mathbb{Z}^{+}$. The n-gap subsequence of $\left\{G_{k}\right\}$ is $\left\{G_{n k}\right\}_{k=1}^{\infty}$.

Moreover, the first term of the subsequence can be any of the first n terms. We can express this via $\left\{G_{n k+m}\right\}_{k=1}^{\infty}$, where $0 \leq m<n$.

n-gap Fibonaccis

Example

The following are the first five n-gap sequences for the Fibonacci numbers:

- 0-gap: $1,1,2,3,5,8,13,21,34,55,89 \ldots$
- 1-gap: $1,2,5,13,34,89,233,610,1597 \ldots$
- 2-gap: 1, 3, 13, 55, 233, 987, 4181...
- 3-gap: 1, 5, 34, 233, 1597...
- 4-gap: 1, 8, 89, 987...
- 5-gap: 1, 13, 233, 4181...

Note that a 0-gap sequence is exactly the original sequence.

A Closer Look at the 2-gap Fibonacci Sequence

$1,5,21,89,377,1597 \ldots$
To decompose positive integers (ignoring uniqueness), we need a coefficient of at least 4.

In fact, the numbers in this sequence are related via the following recurrence:

$$
a_{n}=4 \cdot a_{n-1}+a_{n-2}
$$

Generalizing

Sequence:
1-gap: 1, 2, 5, 13, 34, 89...
2-gap: 1, 3, 13, 55, 233...
3-gap: 1, 5, 34, 233, 1597...
4-gap: 1, 8, 89, 987...
5-gap: 1, 13, 233, 4181...

Corresponding recurrence:

$$
\begin{aligned}
& a_{n}=3 a_{n-1}-a_{n-2} \\
& a_{n}=4 a_{n-1}+a_{n-2} \\
& a_{n}=7 a_{n-1}-a_{n-2} \\
& a_{n}=11 a_{n-1}+a_{n-2} \\
& a_{n}=18 a_{n-1}-a_{n-2}
\end{aligned}
$$

Note that $3,4,7,11,18 \ldots$ are the Lucas numbers.

n-gap Recurrences

Lemma

Let G_{n} be a recurrence relation defined via $G_{n}=G_{n-1}+G_{n-2}$ with initial conditions $G_{1}=a, G_{2}=b$, where $a, b \in \mathbb{Z}^{+}$. Then,

$$
G_{n k+m}=a_{n} \cdot G_{n(k-1)+m}+(-1)^{n+1} \cdot G_{n(k-2)+m}
$$

where n is the length of the gap and $a_{n}=\phi^{n}$ rounded to the nearest integer (i.e. the $\mathrm{n}^{\text {th }}$ Lucas number).

Our Result

Theorem

For odd n, the n-gap subsequence recurrences are the PLRSs necessary for unique decompositions of positive integers.

The condition for odd n comes from the $(-1)^{n+1}$ coefficient. By definition, a PLRS must have all nonnegative coefficients, so an odd n prevents a negative term.

Conjecture

We can naturally extend this to more general sequences.

Conjecture

Let H_{n} be a recurrence relation defined via $H_{n}=\alpha \cdot H_{n-1}+\beta \cdot H_{n-2}$ with initial conditions $H_{1}=a, H_{2}=b$, where $\alpha, \beta, a, b \in \mathbb{Z}^{+}$. Then,

$$
H_{n k+m}=c_{n+2} \cdot H_{n(k-1)+m}-(-\beta)^{n+1} \cdot H_{n(k-2)+m}
$$

where n is the length of the gap and c_{n+2} comes from the sequence $c_{n}=\alpha \cdot c_{n-1}+\beta \cdot c_{n-2}$ with $c_{1}=2, c_{2}=\alpha$.

Thank you!

