CONFORMAL MAP REFERENCES

JOSHUA M. SIKTAR

This document is designed as a list of maps that take certain regions to other regions, generally conformal and holomorphic. This is designed predominantly as a reference for the University of Tennessee Analysis Preliminary Examination.

Full Strip

(1) The map e^z takes the strip $\{z \in \mathbb{C}, -\pi < \Im z < \pi\}$ to the set $\mathbb{C} \setminus (-\infty, 0]$

Imaginary Axis

(1) The map z^2 sends to negative real axis

Negative Real Axis

(1) The map \sqrt{z} sends to imaginary axis

The Right Half-Plane

- (1) The map $\frac{1+z}{1-z}$ maps onto \mathbb{D} .
- (2) The map iz maps onto the upper half-plane

(3) The map z^2 maps onto $C \setminus \{z \in \mathbb{R}, z \leq 0\}$

Half-Strip $\{x + yi, x < 0, 0 < y < \pi\}$

(1) The map e^z takes this half-strip to the upper half-disc

The Upper Half-Plane

- (1) The map -iz maps onto the right half-plane
- (2) The map $\frac{i-z}{i+z}$ maps onto \mathbb{D}

 $\mathbb{C} \setminus \{ z \in \mathbb{R}, z \le 0 \}$

(1) The map \sqrt{z} maps onto the right half-plane

 \mathbb{D}

- (1) The map $\frac{1}{z}$ maps onto the region $\{z \in \mathbb{C}, |z| > 1\}$ (2) The map Log(z) with the $(-\pi, \pi)$ branch of the logarithm maps onto $\mathbb{C} \setminus [-\pi i, \pi i]$.

1

(3) The map $i\left(\frac{1+z}{1-z}\right)$ maps onto the upper half-plane

(4) The map $-i\left(\frac{1+z}{1-z}\right)$ maps onto the lower half-plane

The Upper Half-Disc

Date: July 14, 2020.

JOSHUA M. SIKTAR

(1) The map Log(z) with the $(-\pi, \pi)$ branch of the logarithm maps the upper half-disc to the strip $\{x + yi, x < 0, 0 < y < \pi\}$

Quarter-Plane $\{z \in \mathbb{C} : \Re z > 0, \Im z > 0\}$

(1) The map $\sin^{-1}(z)$ maps this quarter-plane onto the half-strip $\{z \in \mathbb{C}, \Im z > 0, 0 < \Re z < 1\}$

General Strategies I've Discovered for Problem-Solving

- (1) At each step ask yourself if you want to map portions of the real line onto portions of the real line or to something else, like a circle
- (2) If a **clircle** is a line or a circle, then fractional linear transformations map clircles onto clircles
- (3) A strip should remind one of using an exponential map to get to \mathbb{D}

References

[Sar] D. Sarason, "Complex Function Theory," 2nd edition (2007). American Mathematical Society.

2