CONFORMAL MAP REFERENCES

JOSHUA M. SIKTAR

This document is designed as a list of maps that take certain regions to other regions, generally conformal and holomorphic. This is designed predominantly as a reference for the University of Tennessee Analysis Preliminary Examination.

Full Strip
(1) The map e^{z} takes the strip $\{z \in \mathbb{C},-\pi<\Im z<\pi\}$ to the set $\mathbb{C} \backslash(-\infty, 0]$

Imaginary Axis

(1) The map z^{2} sends to negative real axis

Negative Real Axis

(1) The map \sqrt{z} sends to imaginary axis

The Right Half-Plane

(1) The map $\frac{1+z}{1-z}$ maps onto \mathbb{D}.
(2) The map $i z$ maps onto the upper half-plane
(3) The map z^{2} maps onto $C \backslash\{z \in \mathbb{R}, z \leq 0\}$

Half-Strip $\{x+y i, x<0,0<y<\pi\}$
(1) The map e^{z} takes this half-strip to the upper half-disc

The Upper Half-Plane

(1) The map $-i z$ maps onto the right half-plane
(2) The map $\frac{i-z}{i+z}$ maps onto \mathbb{D}
$\mathbb{C} \backslash\{z \in \mathbb{R}, z \leq 0\}$
(1) The map \sqrt{z} maps onto the right half-plane

D

(1) The map $\frac{1}{z}$ maps onto the region $\{z \in \mathbb{C},|z|>1\}$
(2) The map $\log (z)$ with the $(-\pi, \pi)$ branch of the logarithm maps onto $\mathbb{C} \backslash[-\pi i, \pi i]$.
(3) The map $i\left(\frac{1+z}{1-z}\right)$ maps onto the upper half-plane
(4) The map $-i\left(\frac{1+z}{1-z}\right)$ maps onto the lower half-plane

The Upper Half-Disc

(1) The map $\log (z)$ with the $(-\pi, \pi)$ branch of the logarithm maps the upper half-disc to the strip $\{x+y i, x<0,0<y<\pi\}$
Quarter-Plane $\{z \in \mathbb{C}: \Re z>0, \Im z>0\}$
(1) The map $\sin ^{-1}(z)$ maps this quarter-plane onto the half-strip $\{z \in \mathbb{C}, \Im z>0,0<\Re z<$ 1\}

General Strategies I've Discovered for Problem-Solving

(1) At each step ask yourself if you want to map portions of the real line onto portions of the real line or to something else, like a circle
(2) If a clircle is a line or a circle, then fractional linear transformations map clircles onto clircles
(3) A strip should remind one of using an exponential map to get to \mathbb{D}

References

[Sar] D. Sarason, "Complex Function Theory," 2nd edition (2007). American Mathematical Society.

