DERIVATIVES AND ESTIMATES: THEOREMS IN COMPLEX ANALYSIS

JOSHUA M. SIKTAR

1. INTRODUCTION

This document is designed as a reference for theorems in complex analysis (University of Tennessee-Knoxville, MATH 546 Spring 2020) on estimating derivatives. Most of the theorems are useful for solving prelim-style problems studying holomorphic functions on a disc, as well as problems pertaining to harmonic function theory for real or complex variables. The ordering closely follows the exposition of [Sa].

Throughout G refers to an open connected subset of \mathbb{C} unless stated otherwise.

2. ESTIMATES

Theorem 2.1 (Maximum Modulus Principle). (*Sarason p. 90*) Let f be a nonconstant holomorphic function in G mapping onto \mathbb{C} . Then |f| does not attain a local maximum in G.

Theorem 2.2 (Schwarz Lemma). (Sarason p. 91-92) Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic with f(0) = 0. Then $|f(z)| \le |z|$ in all of \mathbb{D} , and the inequality is strict everywhere except the origin, unless $f(z) = \lambda z$ for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$. Furthermore, $|f'(0)| \le 1$.

Theorem 2.3 (Pick's Lemma). (Sarason p. 92) Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic. If $z, w \in \mathbb{D}$ then

$$\left|\frac{f(z) - f(w)}{1 - f(z)\overline{f(w)}}\right| \le \left|\frac{z - w}{1 - z\overline{w}}\right|$$

and the inequality is strict for $z \neq w$ except when f is a linear fractional transformation mapping \mathbb{D} onto \mathbb{D} .

3. HARMONIC FUNCTIONS

Theorem 3.1. (Sarason p. 16) The function f is differentiable in the complex sense at z_0 iff u and v are differentiable in the real sense at z_0 and

$$\frac{\partial u}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0)$$
$$\frac{\partial u}{\partial y}(z_0) = -\frac{\partial v}{\partial x}(z_0)$$

If all this is true, it also holds that

Date: May 31, 2020.

JOSHUA M. SIKTAR

$$\frac{\partial f}{\partial z}(z_0) = \frac{\partial u}{\partial x}(z_0) + i\frac{\partial v}{\partial x}(z_0) = \frac{\partial u}{\partial y}(z_0) - i\frac{\partial v}{\partial y}(z_0)$$

Theorem 3.2. (Sarason p. 16, 24) If $f : G \to \mathbb{C}$ is holomorphic then it is also harmonic. Furthermore, its real and complex parts satisfy the Cauchy-Riemann Equations and are themselves harmonic.

Theorem 3.3 (Liouville Theorem). (Sarason p. 86) An entire bounded function is constant.

Theorem 3.4 (Identity Theorem Complex-Valued). (Sarason p. 89) Let $f, g : G \to \mathbb{C}$ be holomorphic. If f(z) = g(z) in a subset of G containing a limit point of G, then f(z) = g(z) for all $z \in G$.

Theorem 3.5 (Existence of Harmonic Conjugates). (Sarason p. 93) Let $u : G \to \mathbb{R}$ where G is an open convex subset of \mathbb{C} . Then there is a holomorphic function g, unique up to addition of an imaginary constant, where $u = \Re g$.

Theorem 3.6 (Regularity). (Sarason p. 94) Any harmonic function is smooth.

Theorem 3.7 (Mean-Value Property). (*Sarason p. 94*) Let u be a harmonic function in G an open subset of \mathbb{C} , let $z_0 \in G$, and $0 < r < dist(z_0, \mathbb{C} \setminus G)$. Then

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt$$

Theorem 3.8 (Identity Theorem for Harmonic Functions). (Sarason p. 94) If G is a connected open subset of \mathbb{C} and if u and v are harmonic functions in G that are equal on a nonempty open subset of G, then u = v throughout G.

Theorem 3.9 (Maximum Principle for Harmonic Functions). (Sarason p. 95) Let u be a nonconstant real-valued harmonic function in the connected open subset $G \subset \mathbb{C}$. Then u does not attain a local maximum in G.

REFERENCES

[Sa] D. Sarason, "Complex Function Theory," Second Edition. American Mathematical Society, 2000.