Asymptotic Compatibility of Parameterized Optimal Design Problems

Joshua Siktar jsiktar@vols.utk.edu

Spring 2024 Finite Element Circus, Brown University

April 19-20 2024

DEPARTMENT OF MATHEMATICS

- Thanks to my co-advisors/co-authors Abner Salgado and Tadele Mengesha
- Thanks to Peter Monk and Michael Neilan
- NSF-DMS-2206252 and NSF-DMS 2111228.

Find $(\overline{\mathfrak{a}_{\delta}}, \overline{u_{\delta}}) \in \mathcal{H} \times X_0(\Omega_{\delta})$ such that

$$J(\overline{\mathfrak{a}_{\delta}}, \overline{u_{\delta}}) = \min_{\mathfrak{a} \in \mathcal{H}, u \in X_0} J(\mathfrak{a}, u),$$

The minimization is over pairs $(\mathfrak{a}, u) \in \mathcal{H} \times X_0(\Omega_{\delta})$ that satisfy

$$\mathcal{L}_{\delta,\mathfrak{a}}u(x) = g(x) \text{ a.e. } x \in \Omega$$

- $\delta \ge 0$ is the degree of nonlocality;
- g is a fixed external force;
- $\overline{\mathfrak{a}_{\delta}}$ is a material coefficient (design);
- $\overline{u_{\delta}}$ represents the displacement (state);

- Show existence of minimizers
- \bullet Prove variational convergence to local problem, $h\geq 0$ fixed and $\delta\rightarrow 0^+$
- \bullet Discretize via FEM, $\delta \geq 0$ fixed and $h \rightarrow 0^+$
- Study simultaneous limit as $\delta, h \rightarrow 0^+$ (asymptotic compatibility)

Notation

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain.

• Design class:

$$\mathcal{H} := \{ \mathfrak{a} \in L^{\infty}(\Omega) \mid a_{\min} \leq \mathfrak{a}(x) \leq a_{\max} \text{ a.e. } x \in \Omega \}$$

where $0 < a_{\min} < a_{\max}$

• k_{δ} is a non-negative kernel with suitable properties

• Nonlocal bi-linear form:

$$B_{\delta,\mathfrak{A}}(u,v) := \iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x,y) \frac{k_{\delta}(x-y)}{|x-y|^2} (u(x) - u(y))(v(x) - v(y)) dxdy$$

where $\mathcal{D}_{\delta} := (\Omega_{\delta} \times \Omega) \cup (\Omega \times \Omega_{\delta})$ and $\mathfrak{A}(x, y) := \frac{\mathfrak{a}(x) + \mathfrak{a}(y)}{2}$

Nonlocal function space:

$$X_0(\Omega_{\delta}) := \{ u \in L^2(\Omega) \mid B_{\delta,\mathfrak{A}}(u,u) < \infty, u = 0 \text{ on } \Omega_{\delta} \setminus \Omega \}$$

where $\Omega_{\delta} := \Omega + B(0, \delta)$

Analysis

Discretizatior

3 Asymptotic Compatibility

Analysis

Existence of nonlocal optimal designs

Cost functional

$$J(\mathfrak{a}, u) \ := \ \int_{\Omega} g(x) u(x) dx + \frac{1}{2} \|\mathfrak{a}\|_{L^2(\Omega)}^2$$

State equation (weak form):

$$B_{\delta,\mathfrak{A}}(u_{\delta},v) = \langle g,v \rangle, \text{ for all } v \in X_0(\Omega_{\delta}).$$

Theorem (Existence of nonlocal optimal design)

Let $\delta > 0$ be fixed. There exists a pair $(\overline{\mathfrak{a}_{\delta}}, \overline{u_{\delta}})$ minimizing

$$J(\overline{\mathfrak{a}_{\delta}}, \overline{u_{\delta}}) = \min_{\mathfrak{a} \in \mathcal{H}, u \in X_0} J(\mathfrak{a}, u),$$

over pairs that satisfy the state equation.

NOTE: Solutions to this problem are not necessarily unique!

Analysis

Variational convergence as $\delta \rightarrow 0^+$

The local problem is to minimize

$$J(\mathfrak{a}, u) = \int_{\Omega} g(x)u(x) + \frac{1}{2} \|\mathfrak{a}\|_{L^{2}(\Omega)}^{2}$$

over pairs $(\mathfrak{a}, u) \in \mathcal{H} \times H^1_0(\Omega)$ that satisfy

$$B_{0,\mathfrak{a}}(u,v) := \frac{1}{n} \int_{\Omega} \mathfrak{a}(x) \bigtriangledown u(x) \cdot \bigtriangledown v(x) dx = \langle g, v \rangle \quad \forall v \in H^1_0(\Omega)$$

Theorem

Suppose $\{(\overline{\mathfrak{a}_{\delta}}, \overline{u_{\delta}})\}_{\delta>0}$ is a family of solutions to the nonlocal optimal design problem. Then there is $(\overline{\mathfrak{a}}, \overline{u})$ such that $\overline{\mathfrak{a}_{\delta}} \to \overline{\mathfrak{a}}$ strongly in $L^2(\Omega)$, $\overline{u_{\delta}} \to \overline{u}$ strongly in $L^2(\Omega)$, and $(\overline{\mathfrak{a}}, \overline{u})$ solves the local design problem. In addition, we have that $\lim_{\delta\to 0^+} J(\overline{\mathfrak{a}_{\delta}}, \overline{u_{\delta}}) = J(\overline{\mathfrak{a}}, \overline{u})$.

Discretization

3 Asymptotic Compatibility

Discrete Framework

- The states are discretized with continuous piecewise linear functions (with zero nonlocal boundary data)
- We use a variational discretization, meaning we do not explicitly discretize the design space ${\cal H}$

Discretization

Convergence as $h \to 0^+$

Theorem

Let $\delta \geq 0$ be fixed, and let $\{(\overline{\mathfrak{a}_{\delta,h}}, \overline{u_{\delta,h}})\}_{h>0}$ solve the discrete optimal design problem. Then there exists a sub-sequence of mesh indices and $\overline{\mathfrak{a}_{\delta}} \in \mathcal{H}$ such that $\overline{\mathfrak{a}_{\delta,h}} \rightharpoonup \overline{\mathfrak{a}_{\delta}}$ weak-* in $L^{\infty}(\Omega)$. If we denote $\overline{u_{\delta,h}} := \mathcal{L}_{\delta,\overline{\mathfrak{A}_{\delta,h}},h}^{-1}g$ and $\overline{u_{\delta}} := \mathcal{L}_{\delta,\overline{\mathfrak{A}_{\delta}}}^{-1}g$, then:

9 $(\overline{\mathfrak{a}_{\delta}}, \overline{u_{\delta}})$ solves the continuous optimal design problem;

2
$$\overline{u_{\delta,h}} \to \overline{u_{\delta}}$$
 strongly in $X(\Omega_{\delta})$, and $\overline{\mathfrak{a}_{\delta,h}} \to \overline{\mathfrak{a}_{\delta}}$ strongly in $L^2(\Omega)$

$$im_{h\to 0^+} J(\overline{\mathfrak{a}_{\delta,h}}, \overline{\mathfrak{u}_{\delta,h}}) = J(\overline{\mathfrak{a}_{\delta}}, \overline{\mathfrak{u}_{\delta}})$$

Discretization

Asymptotic Compatibility

What is asymptotic compatibility?

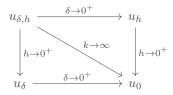
- Introduced by X. Tian and Q. Du (2014)
- Originally developed for linear, nonlocal state equations

 $\mathcal{L}_{\delta,h}u_{\delta,h}=f$

• Guarantees unconditional convergence of approximations in both discretization and horizon parameters

Definition (Asymptotic Compatibility)

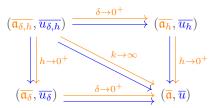
Given fixed data f in a Hilbert Space, the family of solutions $\{u_{\delta,h}\}_{\delta,h>0}$ is asymptotically compatible in $\delta, h > 0$ if for any sequences $\{\delta_k\}_{k=1}^{\infty}, \{h_k\}_{k=1}^{\infty}$ with $\delta_k, h_k \to 0$, we have that $u_{\delta_k,h_k} \to u_0$ strongly in some Hilbert space norm, where u_0 is the solution to a local, continuous problem.



Asymptotic Compatibility

Definition (Asymptotic Compatibility for Optimal Design)

We say that a family of nonlocal discrete optimal design problems is **asymptotically compatible** if for any family of solutions $\{(\overline{\mathfrak{a}_{\delta,h}}, \overline{u_{\delta,h}})\}_{h>0,\delta>0}$ and any sequences $\{\delta_k\}_{k=1}^{\infty}, \{h_k\}_{k=1}^{\infty}$ with $\delta_k, h_k \to 0$, there exists a subsequence for which $\overline{\mathfrak{a}_{\delta_k,h_k}} \to \overline{\mathfrak{a}}$ strongly in $L^2(\Omega)$, and $\overline{u}_{\delta_k,h_k} \to \overline{u}$ strongly in $L^2(\Omega)$, an pair solving the local continuous design problem.



NOTE: The solution $(\overline{\mathfrak{a}}, \overline{u})$ reached depends on the choice of sub-sequence!

Theorem

Our family of discrete optimal design problems is asymptotically compatible as $\delta, h \to 0^+$, and $\lim_{k\to\infty} J(\overline{\mathfrak{a}_{\delta_k,h_k}}, \overline{u_{\delta_k,h_k}}) = J(\overline{\mathfrak{a}}, \overline{u}).$

Proof of asymptotic compatibility

Pick sequences $\{\delta_k\}_{k=1}^{\infty}$, $\{h_k\}_{k=1}^{\infty}$, let $\overline{u_k} := \overline{u_{\delta_k,h_k}}$, $\overline{\mathfrak{a}_k} := \overline{\mathfrak{a}_{\delta_k,h_k}}$. There exists $\overline{\mathfrak{a}} \in \mathcal{H}$ so that $\overline{\mathfrak{a}_k} \xrightarrow{\sim} \overline{\mathfrak{a}}$ in weak-* $L^{\infty}(\Omega)$, let \overline{u} be local state corresponding to $\overline{\mathfrak{a}}$

Step 1: Show that $\liminf_{k\to\infty} J(\overline{\mathfrak{a}_k}, \overline{u_k}) \geq J(\overline{\mathfrak{a}}, \overline{u})$ Let $\mathcal{E}_{\overline{\mathfrak{A}_k}}^{\delta_k}$ denote nonlocal energy, $\mathcal{E}_{\overline{\mathfrak{a}}}^{\mathsf{loc}}$ denote local energy, use the identities

$$\mathcal{E}_{\overline{\mathfrak{A}_k}}^{\delta_k}(\overline{u_k}) = -\frac{1}{2}B_{\delta_k,\overline{\mathfrak{A}_k}}(\overline{u_k},\overline{u_k}) \quad \text{AND} \quad \mathcal{E}_{\overline{\mathfrak{a}}}^{\mathsf{loc}}(\overline{u}) = -\frac{1}{2}B_{0,\overline{\mathfrak{a}}}(\overline{u},\overline{u})$$

to show that

$$\operatorname{liminf}_{k\to\infty} \int_{\Omega} g(x) \overline{u_k}(x) dx \geq \int_{\Omega} g(x) \overline{u}(x) dx$$

Step 2: Show that $\limsup_{k\to\infty} J(\overline{\mathfrak{a}_k}, \overline{u_k}) \leq J(\overline{\mathfrak{a}}, \overline{u})$ Let $\widetilde{u_k} \in X_{\delta_k, h_k}$ denote the Ritz projection associated with $\overline{\mathfrak{a}}$, then

$$J(\overline{\mathfrak{a}_k}, \overline{u_k}) \leq J(\overline{\mathfrak{a}}, \widetilde{u_k})$$

and send $k \to \infty$.

NOTE: The use of $\overline{\alpha}$ as a test function is allowed because we are using a variational discretization.

Proof of asymptotic compatibility (continued)

Step 3: Show that $(\overline{\mathfrak{a}},\overline{u})$ solves the local design problem Analogous to Step 2

Step 4: Show that $\overline{u_k} \to \overline{u}$ strongly in $L^2(\Omega)$ Using Steps 1-2 we have

$$\lim_{k \to \infty} \int_{\Omega} g(x) \overline{u_k}(x) dx = \int_{\Omega} g(x) \overline{u}(x) dx$$

and then use the state equations to prove

$$\lim_{k \to \infty} \|\overline{u_k} - \overline{u}\|_{L^2(\Omega)}^2 \lesssim \lim_{k \to \infty} B_{\delta_k, \overline{\mathfrak{A}_k}}(\overline{u_k} - \overline{u}, \overline{u_k} - \overline{u}) = 0$$

Step 5: Improve coefficient convergence to $\overline{\mathfrak{a}_k} \to \overline{\mathfrak{a}}$ strongly in $L^2(\Omega)$ Due to Steps 1-2 we get

$$\lim_{k \to \infty} \int_{\Omega} |\overline{\mathfrak{a}_k}(x)|^2 dx = \int_{\Omega} |\overline{\mathfrak{a}}(x)|^2 dx$$

Analysis

2 Discretization

3 Asymptotic Compatibility

Necessary changes

- Nonlocal bi-linear form: $B_{\delta,\mathfrak{A}}(u,v) := \iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x,y) \frac{k_{\delta}(x-y)}{|x-y|^2} Du(x,y) Dv(x,y) dxdy \text{ where } Du(x,y) = (u(x) - u(y)) \cdot \frac{x-y}{|x-y|} \text{ (here } u : \Omega_{\delta} \to \mathbb{R}^n)$
- Nonlocal function space: $X(\Omega_{\delta}; \mathbb{R}^n) := \{ u \in L^2(\Omega; \mathbb{R}^n) \mid B_{\delta, \mathfrak{A}}(u, u) < \infty \}$
- Local bi-linear form $B_{0,\mathfrak{a}}(u,v) := \frac{1}{n(n+2)} \int_{\Omega} \mathfrak{a}(x) (2\langle \mathsf{Sym}(\bigtriangledown u(x)), \mathsf{Sym}(\bigtriangledown v(x)) \rangle_F + \mathsf{div}(u(x))\mathsf{div}(v(x))) dx$
- Local function space: $H^1(\Omega;\mathbb{R}^n):=\{u\in L^2(\Omega;\mathbb{R}^n)\mid B_{0,\mathfrak{a}}(u,u)<\infty\}$

NOTE: Same class of design coefficients!

Summary and concluding remarks

- Showed existence of minimizers
- $\bullet\,$ Considered variational convergence as $\delta\to 0^+$
- Discretized via FEM, $h \to 0^+$
- $\bullet\,$ Studied simultaneous limit as $\delta,h\to 0^+$

Questions?? jsiktar@vols.utk.edu