An Optimal Control Problem in Peridynamics: Analysis and Discretization

Joshua Siktar
jsiktar@vols.utk.edu

Texas A\&M Numerical Analysis Seminar

May 1, 2024

THE UNIVERSITY OF
TENNESSEE
KNOXVILLE

MATHEMATICS

Acknowledgments

- Thanks to my co-advisors Abner Salgado and Tadele Mengesha for their continued mentorship
- Thanks to Alan Demlow for arranging this visit
- Thanks to NSF grant 2111228 for financial support

Problem statement

Find $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \in X_{0} \times Z_{\text {ad }}$ such that

$$
I\left(\overline{u_{\delta}}, \overline{\delta_{\delta}}\right)=\min _{g_{\delta} \in L^{2}, u_{\delta} \in x_{0}}\left\{\int_{\Omega} F\left(x, u_{\delta}(x)\right) d x+\frac{\eta}{2} \int_{\Omega} \Lambda(x)|g(x)|^{2} d x\right\},
$$

over pairs $\left(u_{\delta}, g_{\delta}\right) \in X_{0} \times Z_{\text {ad }}$ that satisfy some state equation

$$
B_{\delta}\left(u_{\delta}, w_{\delta}\right)=\int_{\Omega} g_{\delta}(x) \cdot w_{\delta}(x), \forall w_{\delta} \in X_{0}
$$

where $\delta \geq 0$ is the degree of nonlocality. Here $\overline{g_{\delta}}$ is an external force and $\overline{u_{\delta}}$ represents the displacement

Outline

(1) Overview and notation
(2) Well-posedness
(3) Variational convergence as $\delta \rightarrow 0^{+}$

Discretization
(5) Asymptotic compatibility

6 Implementation

Motivation and origins

For our problem the nonlocal operator is

$$
\mathcal{L}_{\delta} u(x)=\frac{1}{2} \int_{\Omega_{\delta}} \mathfrak{A}(x, y) k_{\delta}(|x-y|) \frac{D u(x, y)}{|x-y|} \frac{y-x}{|x-y|} d y
$$

Nonlocal equations [or systems] take the form

$$
\begin{cases}\mathcal{L}_{\delta} u=g, & x \in \Omega \\ u=0, & x \in \Omega_{\delta} \backslash \Omega\end{cases}
$$

Common in solid state mechanics, including peridynamics

Motivation and origins (continued)

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals over derivatives, attributed to Stewart A. Silling

Features:

- Exchanges derivatives in continuum models for integrals (helps address crack formation)
- Treats particles as having a bond between them (bond-based model)
- Range of interaction parameterized by δ, called horizon
- Material parameters represented by $\mathfrak{a}(x)$ (e.g., density)
- Operator is elliptic (not parabolic or hyperbolic)

Sample candidate integrand

Example:

$$
F(x, u(x))=\left|u(x)-u_{\mathrm{des}}(x)\right|^{2}
$$

where $u_{\text {des }}$ is the optimal shape of the material in space to fit a predetermined hole as closely as possible

Material
(deformable)

Hole (fixed
shape)

Goals

- Show existence and uniqueness of minimizers (well-posedness)
- Consider variational convergence as $\delta \rightarrow 0^{+}$
- Discretize via FEM (δ fixed, $h \rightarrow 0^{+}$)
- Study simultaneous limit as $\delta, h \rightarrow 0^{+}$(asymptotic compatibility)
- Implementation/numerical results

Properties of kernels

Kernel sequence $\left\{k_{\delta}\right\}_{\delta>0}$ radial, integrable, non-negative, supported in $B(0, \delta)$, $k_{\delta}(r) r^{-2}$ is nonincreasing, and

$$
\lim _{\delta \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} k_{\delta}(\xi) d \xi=\delta_{0}
$$

Also, for all $\delta>0$:

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} k_{\delta}(\xi) d \xi=1 \\
\lim _{t \rightarrow \infty} \int_{\mathbb{R}^{n} \backslash B(0, t)} k_{\delta}(\xi) d \xi=0
\end{gathered}
$$

Notation

- Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain, $\Omega_{\delta}:=\Omega \cup\{x, \operatorname{dist}(x, \partial \Omega)<\delta\}$
- $\Omega_{\delta} \backslash \Omega$ is nonlocal boundary
- $\mathcal{D}_{\delta}:=\left(\Omega \times \Omega_{\delta}\right) \cup\left(\Omega_{\delta} \times \Omega\right)$
- Projected difference: $D u(x, y):=\frac{(u(x)-u(y)) \cdot(x-y)}{|x-y|}$, nonlocal linearized strain (for vector-valued functions)
- Our material coefficient function is

$$
\mathfrak{A}(x, y):=\frac{\mathfrak{a}(x)+\mathfrak{a}(y)}{2}
$$

where there exist $a_{\min }, a_{\max }>0$ so $a_{\min } \leq \mathfrak{a} \leq a_{\max }$ on Ω_{δ}.

Bi-linear forms

Nonlocal bi-linear form:

$$
B_{\delta}(u, v):=\frac{1}{2} \iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x, y) k_{\delta}(x-y) \frac{D u(x, y)}{|x-y|} \frac{D v(x, y)}{|x-y|} d x d y
$$

Local bi-linear form:

$$
B_{0}(u, v):=C(n) \int_{\Omega} \mathfrak{a}(x)\left(2\langle\operatorname{Sym}(\nabla u), \operatorname{Sym}(\nabla v)\rangle_{F}+\operatorname{div}(u) \operatorname{div}(v)\right) d x,
$$

with $C(n)=\frac{1}{(n+2)(n+4)}$
Inner products denoted $\langle\cdot, \cdot\rangle_{Y} ; L^{2}$-inner product denoted $\langle\cdot, \cdot\rangle$

Function spaces and norms

Our function space is based on B_{δ} :

$$
X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right):=\left\{\left.u\right|_{\Omega} \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \mid B_{\delta}(u, u)<\infty\right\}
$$

Version with zero nonlocal boundary data:

$$
X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right):=\left\{u \in X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \mid u=0 \text { in } \Omega_{\delta} \backslash \Omega\right\}
$$

Underlying norm on $X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$:

$$
\|u\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}:=\|u\|_{L^{2}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\frac{1}{2} \iint_{\mathcal{D}_{\delta}} k_{\delta}(x-y) \frac{|D u(x, y)|^{2}}{|x-y|^{2}} d x d y
$$

Cost functional assumptions

$$
I(u, g):=\int_{\Omega} F(x, u(x)) d x+\frac{\eta}{2} \int_{\Omega} \Lambda(x)|g(x)|^{2} d x
$$

Here $Z_{\text {ad }}$ is a nonempty, closed, convex, and bounded subset of $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, taking the form

$$
Z_{\mathrm{ad}}=\left\{z \in L^{\infty}\left(\Omega ; \mathbb{R}^{n}\right) \mid a \preceq z \preceq b\right\}
$$

Here $[a]_{i} \leq[b]_{i}$ for all $i \in\{1,2, \ldots, n\}$ with $a=\left([a]_{1}, \ldots,[a]_{n}\right)$ and $b=\left([b]_{1}, \ldots,[b]_{n}\right)$ being vector fields in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right), \eta \geq 0$, and $\Gamma \in L^{\infty}(\Omega)$ is strictly positive.

Cost functional assumptions (continued)

The integrand $F: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ possesses the following properties:
(1) For all $v \in \mathbb{R}^{n}$ the mapping $x \mapsto F(x, v)$ is measurable;
(3) For all $x \in \Omega$ the mapping $v \mapsto F(x, v)$ is continuous and convex;
(0) There exist $c_{1}>0$ and $\ell \in L^{1}(\Omega)$

$$
|F(x, v)| \leq c_{1}|v|^{2}+\ell(x)
$$

for all $x \in \Omega, v \in \mathbb{R}^{n}$.

Admissible classes

$$
\begin{aligned}
& \mathcal{A}^{\delta}:=\left\{(v, f) \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \times Z_{\text {ad }} \mid\right. \\
&\left.v \text { solves state system with right hand side } f \text { for any } w \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)\right\} \\
& \mathcal{A}^{\text {loc }}:=\left\{(v, f) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \times Z_{\text {ad }} \mid v \text { solves local BVP for any } w \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)\right\}
\end{aligned}
$$

Outline

(1) Overview and notation
(2) Well-posedness
(3) Variational convergence as $\delta \rightarrow 0^{+}$

Discretization
(5) Asymptotic compatibility
(6) Implementation

Structural properties

- $\left(X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right),\|\cdot\|_{X}\right)$ and $\left(X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right),\|\cdot\|_{X}\right)$ are Hilbert
- Can extend $u \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$ by zero to any open set $B \supset \Omega_{\delta}$, including \mathbb{R}^{n}.
- $H^{1}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \hookrightarrow X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$
- $X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \Subset L^{2}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$

Nonlocal Poincaré-Korn Inequality

Proposition (Mengesha-Du 2014)

There exists a $\delta_{0}>0$ and a constant $C\left(\delta_{0}\right)>0$ such that for all $\delta \in\left(0, \delta_{0}\right]$ and $u \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$,

$$
\|u\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2} \leq C\left(\delta_{0}\right) \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} \frac{k_{\delta}(x-y)|D u(x, y)|^{2}}{|x-y|^{2}} d x d y .
$$

Notes:

- The assumption of $k_{\delta}(r) r^{-2}$ being non-increasing is needed in the proof
- The projected difference vanishes under infinitesimal rigid displacements

State equation is well-posed!

Theorem (Existence and Uniqueness for State Equation)

For any $g_{\delta} \in Z_{\text {ad }}$, there exists a unique $u_{\delta} \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$ such that the state system

$$
B_{\delta}\left(u_{\delta}, w\right)=\left\langle g_{\delta}, w\right\rangle
$$

is satisfied for all $w \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$. Furthermore, we have the stability estimate

$$
\left\|u_{\delta}\right\|_{x\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim\left\|g_{\delta}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)^{*}}
$$

for some constant independent of δ.

Well-posedness of optimal control problem

Theorem (Well-posedness)

There exists $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \in \mathcal{A}^{\delta}$ minimizing

$$
I\left(u_{\delta}, g_{\delta}\right)=\int_{\Omega} F\left(x, u_{\delta}(x)\right) d x+\frac{\eta}{2} \int_{\Omega} \Lambda(x)\left|g_{\delta}(x)\right|^{2} d x
$$

where $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right)$ solves

$$
B_{\delta}\left(u_{\delta}, v_{\delta}\right)=\int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) d x \quad \forall v_{\delta} \in X_{0}
$$

Furthermore, if F is strictly convex or $\eta>0$, then the minimizer is unique.

Outline

(1) Overview and notation
(2) Well-posedness
(3) Variational convergence as $\delta \rightarrow 0^{+}$

Discretization

(5) Asymptotic compatibility
(6) Implementation

Needed compactness result

Proposition (Mengesha-Du 2014)

Suppose $\left\{u_{\delta}\right\}_{\delta>0} \subset L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ is a bounded family of vector fields such that

$$
\sup _{\delta>0} \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} k_{\delta}(x-y) \frac{\left|D u_{\delta}(x, y)\right|^{2}}{|x-y|^{2}} d x d y<\infty,
$$

where $k_{\delta}(r) r^{-2}$ is nonincreasing; then the family has compact closure in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, and any limit point u belongs to $H^{1}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$

In fact, we can show $u \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$!

Local and nonlocal energies

Define for $u \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$:

$$
\begin{aligned}
& E_{\delta}(u):=\iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x, y) k_{\delta}(x-y) \frac{|D u(x, y)|^{2}}{|x-y|^{2}} d x d y \\
& E_{0}(u):=C(n) \int_{\Omega} \mathfrak{a}(x)\left(2\|\operatorname{Sym}(\nabla u(x))\|_{F}^{2}+\operatorname{div}(u(x))^{2}\right) d x
\end{aligned}
$$

where $C(n):=\frac{1}{(n+2)(n+4)}$, and $\|\cdot\|_{F}$ is the Fröbenius norm. Take to be $+\infty$ when not well-defined

Minimization of local functional

Theorem

Suppose $\left\{\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right)\right\}_{\delta>0}$ is the family of solutions to the nonlocal control problem. Then, there is (\bar{u}, \bar{g}) such that $\overline{u_{\delta}} \rightarrow \bar{u}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ and $\overline{g_{\delta}} \rightharpoonup \bar{g}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Moreover, (\bar{u}, \bar{g}) solves the local optimal control problem.

- Notice $\left\{\bar{u}_{\delta}\right\}_{\delta>0}$ have bounded semi-norm so compactness gives $\bar{u} \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$
- Notice $\left\{\overline{g_{\delta}}\right\}_{\delta>0}$ are bounded in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ so reflexivity gives $\bar{g} \in Z_{\text {ad }}$ Need minimization to be preserved in limit!

「-Convergence

Theorem

We say that the family $E_{\delta}: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R} \cup\{+\infty\} \Gamma$-converges strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ to $E_{0}: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R} \cup\{+\infty\}$ (denoted $E_{\delta} \stackrel{\Gamma}{\rightarrow} E_{0}$). That is, the following hold:
i) The liminf inequality: Assume $u_{\delta} \rightarrow u$ strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Then

$$
E_{0}(u) \leq \liminf _{\delta \rightarrow 0^{+}} E_{\delta}\left(u_{\delta}\right)
$$

ii) Recovery sequence property: For each $u \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, there exists a sequence $\left\{u_{\delta}\right\}_{\delta>0}$ where $u_{\delta} \rightarrow u$ strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ and

$$
\limsup _{\delta \rightarrow 0^{+}} E_{\delta}\left(u_{\delta}\right) \leq E_{0}(u)
$$

Convergence of Minimizers for Energies

Corollary

If $\left\{v_{\delta}\right\}_{\delta>0}$ is a sequence of minimizers for $\left\{E_{\delta}\right\}_{\delta>0}$ over $L^{2}\left(\Omega ; \mathbb{R}^{n}\right), v$ is a limit point of this sequence, and $E_{\delta} \xrightarrow{\Gamma} E_{0}$, then v is a minimizer of E_{0} on $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Finally,

$$
\lim _{\delta \rightarrow 0^{+}} E_{\delta}\left(\overline{u_{\delta}}\right)-\left\langle\overline{g_{\delta}}, \overline{u_{\delta}}\right\rangle=E_{0}(\bar{u})-\langle\bar{g}, \bar{u}\rangle
$$

Tying together optimal control

Final step: Show $(\bar{u}, \bar{g}) \in \mathcal{A}^{\text {loc }}$ solves local control problem For any $(v, f) \in \mathcal{A}^{\text {loc }}$,

$$
I(\bar{u}, \bar{g}) \leq \lim _{\delta \rightarrow 0^{+}} I\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \leq \lim _{\delta \rightarrow 0^{+}} I\left(v_{\delta}, f\right) \leq I(v, f)
$$

where $\left(v_{\delta}, f\right)$ are solutions to the nonlocal state equation.
NOTE: Can improve convergence of controls to strong L^{2} using a projection formula!

$$
\begin{aligned}
\overline{g_{\delta}}(x) & =\mathbb{P}_{Z_{\mathrm{ad}}}\left(-\frac{1}{\lambda} \overline{p_{\delta}}(x)\right), \\
\bar{g}(x) & =\mathbb{P}_{Z_{\mathrm{ad}}}\left(-\frac{1}{\lambda} \bar{p}(x)\right),
\end{aligned}
$$

where $\overline{p_{\delta}}, \bar{p}$ are the optimal adjoints.

Outline

(1) Overview and notation
(2) Well-posedness
(3) Variational convergence as $\delta \rightarrow 0^{+}$
4. Discretization
(5) Asymptotic compatibility
(6) Implementation

Nonlocal discrete problem statement

Find $\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right) \in X_{\delta, h} \times Z_{h}$ such that

$$
I\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right)=\min _{u_{\delta, h} \in X_{\delta, h}, g_{\delta, h} \in Z_{h}} I\left(u_{\delta, h}, g_{\delta, h}\right),
$$

over pairs $\left(u_{\delta, h}, g_{\delta, h}\right) \in X_{\delta, h} \times Z_{h}$ that satisfy

$$
B_{\delta}\left(u_{\delta, h}, v_{\delta, h}\right)=\left\langle g_{\delta, h}, v_{\delta, h}\right\rangle, \quad \forall v_{\delta, h} \in X_{\delta, h} .
$$

Recap:

$$
I\left(u_{\delta, h}, g_{\delta, h}\right):=\int_{\Omega} F\left(x, u_{\delta, h}(x)\right) d x+\frac{\eta}{2}\left\|g_{\delta, h}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}
$$

Henceforth assume $\Gamma \equiv 1$

Local discrete problem statement

Find $\left(\overline{u_{h}}, \overline{g_{h}}\right) \in X_{h} \times Z_{h}$ such that

$$
I\left(\overline{u_{h}}, \overline{g_{h}}\right)=\min _{u_{h} \in X_{h}, g_{h} \in Z_{h}} I\left(u_{h}, g_{h}\right),
$$

over pairs $\left(u_{h}, g_{h}\right) \in X_{h} \times Z_{h}$ that satisfy

$$
B_{0}\left(u_{h}, v_{h}\right)=\left\langle g_{h}, v_{h}\right\rangle, \quad \forall v_{h} \in Z_{h} .
$$

Notation

- Mesh family: $\left\{\mathscr{T}_{h}\right\}_{h>0}$ (discretizing Ω_{δ}) shape-regular and quasi-uniform
- Piecewise polynomials of degree m (with respect to our mesh):

$$
\mathcal{P}_{m}\left(T ; \mathbb{R}^{n}\right):=\left\{\sum_{\alpha \in \mathbb{N}_{0}^{n}: \sum_{i=1}^{n} \alpha_{i} \leq m} v_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid v_{\alpha} \in \mathbb{R}^{n},\left(x_{i}\right)_{i=1}^{n} \in T\right\}
$$

- Discretized state space: $X_{\delta, h}:=X_{h}:=\left\{w_{h} \in C^{0}\left(\overline{\Omega_{\delta}} ; \mathbb{R}^{n}\right)\left|w_{h}\right|_{T} \in\right.$ $\mathcal{P}_{1}\left(T ; \mathbb{R}^{n}\right) \forall T \in \mathscr{T}_{h}, w_{h}=0$ on $\left.\Omega_{\delta} \backslash \Omega\right\}$
- Discretized control space: $Z_{h}:=\left\{z_{h} \mid T \in \mathcal{P}_{0}\left(T ; \mathbb{R}^{n}\right) \forall T \in \mathscr{T}_{h}\right\}$
- $\Pi_{0}: Z_{\text {ad }} \rightarrow Z_{h}$ is piecewise constant projection by averages on each triangle

Notation (continued)

Nonlocal discrete control space: $\left(X_{\delta, h},\|\cdot\| X\right)$ Local discrete control space $\left(X_{h},\|\cdot\|_{H^{1}}\right)$

$$
\begin{aligned}
& \mathcal{A}_{h}^{\delta}:=\left\{\left(w_{\delta, h}, f_{\delta, h}\right) \in X_{\delta, h} \times Z_{h} \mid\right. \\
&\left.w_{\delta, h} \text { solves system with right-hand side } f_{\delta, h} \text { for any } v_{\delta, h} \in X_{\delta, h}\right\} \\
& \mathcal{A}_{h}^{\text {loc }}:=\left\{\left(w_{h}, f_{h}\right) \in X_{h} \times Z_{h} \mid\right. \\
&\left.\quad w_{h} \text { solves local system with right-hand side } f_{h} \text { for any } v_{h} \in X_{h}\right\}
\end{aligned}
$$

Optimality conditions preliminaries

Reduced cost functional:

$$
j_{\delta}\left(g_{\delta}\right):=\int_{\Omega} F\left(x, S_{\delta} g_{\delta}(x)\right) d x+\frac{\eta}{2}\left\|g_{\delta}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}
$$

Assume now that

$$
F(x, v):=\frac{1}{2}|v|^{2} .
$$

First-order necessary condition:

$$
\left\langle j_{\delta}^{\prime}\left(\overline{g_{\delta}}\right), \gamma_{z}-\overline{g_{\delta}}\right\rangle \geq 0 \quad \forall \gamma_{\mathrm{z}} \in Z_{\mathrm{ad}}
$$

Optimality conditions

Nonlocal continuous optimality conditions (including adjoint)

$$
\begin{aligned}
\left\langle\overline{p_{\delta}}+\eta \overline{g_{\delta}}, \gamma_{z}-\overline{g_{\delta}}\right\rangle & \geq 0, \quad \forall \gamma_{z} \in Z_{\mathrm{ad}} \\
\overline{p_{\delta}}=S_{\delta}^{*} F_{u}\left(\cdot, \overline{u_{\delta}}\right) & =S_{\delta} F_{u}\left(\cdot, \overline{u_{\delta}}\right) \\
\overline{u_{\delta}} & =S_{\delta} \overline{g_{\delta}} .
\end{aligned}
$$

Projection formula:

$$
\overline{g_{\delta}}(x)=\mathbb{P}_{Z_{\mathrm{ad}}}\left(-\frac{1}{\lambda} \overline{p_{\delta}}(x)\right) .
$$

NOTE: No second-order optimality conditions needed (strict convexity!)

Optimality conditions (discretized)

Nonlocal discrete optimality conditions (including adjoint)

$$
\begin{aligned}
\left\langle\overline{p_{\delta, h}}+\eta \overline{g_{\delta, h}}, \gamma_{h}-\overline{g_{\delta, h}}\right\rangle & \geq 0, \quad \forall \gamma_{h} \in Z_{\mathrm{ad}} \cap Z_{h} \\
\overline{p_{\delta, h}}=S_{\delta, h}^{*} F_{u}\left(\cdot, \overline{u_{\delta, h}}\right) & =S_{\delta, h} F_{u}\left(\cdot, \overline{u_{\delta, h}}\right) \\
\overline{u_{\delta, h}} & =S_{\delta, h} \overline{g_{\delta, h}} .
\end{aligned}
$$

Projection formula:

$$
\overline{g_{\delta, h}}(x)=\mathbb{P}_{Z_{\mathrm{ad}}}\left(-\frac{1}{\eta} \Pi_{0} \overline{p_{\delta, h}}(x)\right)
$$

Intermediary functions

By Lax-Milgram, we may define $\widehat{u_{\delta}}, \widehat{p_{\delta}} \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$ such that

$$
\begin{array}{ll}
B_{\delta}\left(\widehat{u_{\delta}}, v_{\delta}\right)=\left\langle\overline{g_{\delta, h}}, v_{\delta}\right\rangle & \forall v_{\delta} \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) ; \\
B_{\delta}\left(v_{\delta}, \widehat{p_{\delta}}\right)=\left\langle v_{\delta}, \overline{u_{\delta, h}}\right\rangle & \forall v_{\delta} \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) ;
\end{array}
$$

also define $\widehat{u_{h}}, \widehat{p_{h}} \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ such that

$$
\begin{array}{ll}
B_{0}\left(\widehat{u_{h}}, v\right)=\left\langle\overline{g_{h}}, v\right\rangle & \forall v \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) ; \\
B_{0}\left(v, \widehat{p_{h}}\right)=\left\langle v, \widehat{u_{h}}\right\rangle & \forall v \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) .
\end{array}
$$

State and adjoint error estimate

Theorem (State and Adjoint Error Estimates)

Suppose that $\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right)$ is the solution to the nonlocal discrete problem, $\overline{p_{\delta, h}}$ solves the discrete adjoint equation given $\overline{u_{\delta, h}} ;\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right)$ is the solution to the nonlocal continuous problem; and $\overline{p_{\delta}}$ solves the continuous adjoint equation given $\overline{u_{\delta}}$. Then

$$
\left\|\overline{u_{\delta}}-\overline{u_{\delta, h}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim \inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} ;
$$

$$
\begin{aligned}
\left\|\overline{p_{\delta}}-\overline{p_{\delta, h}}\right\|_{X\left(\Omega_{\delta ;} ; \mathbb{R}^{n}\right)} \lesssim \inf _{v_{\delta, h} \in X_{\delta, h}} & \left\|\widehat{p_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta ;} ; \mathbb{R}^{n}\right)}+ \\
& \inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}
\end{aligned}
$$

State and adjoint error estimates (continued)

Proof strategy for state error:

- Test with $v_{\delta}:=\overline{u_{\delta}}-\widehat{u_{\delta}}$ in state system and intermediary equation, subtract
- Use Hölder Inequality to get $\left\|\overline{u_{\delta}}-\widehat{u_{\delta}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim\left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}$
- Use Ceá's Lemma on space $X_{\delta, h}$

Note: Adjoint error estimate proven by same strategy

State and adjoint error estimates (local)

Theorem

Let (\bar{u}, \bar{g}) denote the solution to the local continuous problem, while $\left(\overline{u_{h}}, \overline{g_{h}}\right)$ is the solution to the local discrete problem. Assume also that \bar{p} denotes the solution to the continuous adjoint problem, while $\overline{p_{h}}$ solves the discrete adjoint problem. Then,

$$
\begin{gathered}
\left\|\bar{u}-\overline{u_{h}}\right\|_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)} \lesssim \inf _{v_{h} \in X_{h}}\left[\widehat{u_{h}}-v_{h}\right]_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)}+\left\|\bar{g}-\overline{g_{h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \\
\left\|\bar{p}-\overline{p_{h}}\right\|_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)} \lesssim \inf _{v_{\delta, h} \in X_{h}}\left[\widehat{p_{h}}-v_{h}\right]_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)}+\inf _{v_{h} \in X_{h}}\left[\widehat{u_{h}}-v_{h}\right]_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)}+\left\|\bar{g}-\overline{g_{h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} .
\end{gathered}
$$

Control convergence

Theorem (Convergence of Controls)

Assume that $\overline{g_{\delta}}$ is the optimal control associated with the nonlocal continuous problem, and $\overline{g_{\delta, h}}$ be the discrete optimal control. Then we have the convergence

$$
\begin{aligned}
\left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \lesssim \omega(h) & +\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \\
& +\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} .
\end{aligned}
$$

- Proof

Nonlocal problem convergence: summary

Corollary (Full Norm Solution Convergence)

In the setting of our problem formulation,

$$
\left.\begin{array}{rl}
\left\|\overline{u_{\delta}}-\overline{u_{\delta, h}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim & \omega(h)+ \\
& \inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta ;} ; \mathbb{R}^{n}\right)}+ \\
& \operatorname{vinf}_{\delta, h} \in X_{\delta, h}
\end{array} \overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta ;} ; \mathbb{R}^{n}\right)} ;
$$

$$
\begin{aligned}
\left\|\overline{p_{\delta}}-\overline{p_{\delta, h}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim & \omega(h)+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{p}_{\delta}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u}_{\delta}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta ;} ; \mathbb{R}^{n}\right)} \\
& +\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta ;} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} .
\end{aligned}
$$

Local convergence results

Theorem

Suppose (\bar{u}, \bar{g}) denotes the solution to the local continuous problem, while ($\overline{u_{h}}, \overline{g_{h}}$) is the solution to the local discrete problem, and \bar{p} and $\overline{p_{h}}$ solve the respective adjoint problems. We have the estimates

$$
\begin{gathered}
\left\|\bar{u}-\overline{u_{h}}\right\|_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)} \lesssim \inf _{v_{h} \in X_{h}}\left[\widehat{u}-v_{h}\right]_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)}+\left\|\bar{g}-\overline{g_{h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} ; \\
\|\bar{p}-\bar{p}\|_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)} \lesssim \inf _{v_{h} \in X_{h}}\left[\widehat{p}-v_{h}\right]_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)}+\inf _{v_{h} \in X_{h}}\left[\widehat{u}-v_{h}\right]_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)}+\left\|\bar{g}-\overline{g_{h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} . \\
\left\|\bar{g}-\overline{g_{h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \lesssim h+\inf _{v_{h} \in X_{h}}\left[\bar{p}-v_{h}\right]_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)}+\inf _{v_{h} \in X_{h}}\left[\bar{u}-v_{h}\right]_{H^{1}\left(\Omega ; \mathbb{R}^{n}\right)} .
\end{gathered}
$$

Discrete analogues of convergence

Proposition (Γ-convergence of discrete problems)

We have that $E_{\delta} \xrightarrow{\Gamma} E_{0}$ in the family of spaces $\left\{X_{\delta, h}\right\}_{\delta>0}$ in the strong $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ topology.

Theorem (Discrete Convergence)

Suppose $\left\{\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right)\right\}_{\delta>0} \in \mathcal{A}_{h}^{\delta}$ is the family of solutions to the nonlocal discrete problem. Then, there is $\left(\overline{u_{h}}, \overline{g_{h}}\right) \in \mathcal{A}_{h}^{\text {loc }}$ such that $\overline{u_{\delta, h}} \rightarrow \overline{u_{h}}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ and $\overline{g_{\delta, h}} \rightarrow \overline{g_{h}}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Moreover, $\left(\overline{u_{h}}, \overline{g_{h}}\right)$ solves the local discrete optimal control problem.
(2) Well-posedness
(3) Variational convergence as $\delta \rightarrow 0^{+}$

Discretization
(5) Asymptotic compatibility

Implementation

What is asymptotic compatibility?

- Introduced by X. Tian and Q. Du (2014)
- Originally developed for linear, non-local state equations

$$
\mathcal{L}_{\delta, h} u_{\delta, h}=f
$$

- Guarantees unconditional convergence of approximations in both discretization and horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions $\left\{u_{\delta, h}\right\}_{\delta, h>0}$ is asymptotically compatible in $\delta, h>0$ if for any sequences $\left\{\delta_{k}\right\}_{k=1}^{\infty},\left\{h_{k}\right\}_{k=1}^{\infty}$ with $\delta_{k}, h_{k} \rightarrow 0$, we have that $u_{\delta_{k}, h_{k}} \rightarrow u_{0}$ strongly in some Hilbert space norm, where u_{0} is the solution to a local, continuous problem.

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions $\left\{\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right)\right\}_{h>0, \delta>0}$ to the nonlocal discrete optimal control problem is asymptotically compatible in $\delta, h>0$ if for any sequences $\left\{\delta_{k}\right\}_{k=1}^{\infty},\left\{h_{k}\right\}_{k=1}^{\infty}$ with $\delta_{k}, h_{k} \rightarrow 0$, we have that $\overline{g_{\delta_{k}, h_{k}}} \rightarrow \bar{g}$ strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, and $\overline{u_{\delta_{k}, h_{k}}} \rightarrow \bar{u}$ strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Here $(\bar{u}, \bar{g}) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \times Z_{\text {ad }}$ denotes the optimal solution for the local continuous problem.

Asymptotic compatibility: result and notation

Theorem

Our family of discrete optimal control problems is asymptotically compatible as $\delta, h \rightarrow 0^{+}$, and $\lim _{k \rightarrow \infty} I\left(\overline{u_{\delta_{k}, h_{k}}}, \overline{g_{\delta_{k}, h_{k}}}\right)=I(\bar{u}, \bar{g})$.

For convenience denote $\left(\overline{u_{k}}, \overline{g_{k}}, \overline{p_{k}}\right):=\left(\overline{u_{\delta_{k}, h_{k}}}, \overline{g_{\delta_{k}, h_{k}}}, \overline{p_{\delta_{k}, h_{k}}}\right)$.
Step 0: Pick sub-sequence of $\left\{\left(\overline{u_{k}}, \overline{g_{k}}, \overline{p_{k}}\right)\right\}_{k=1}^{\infty}$ so there is a limit point $\left(u_{*}, g_{*}, p_{*}\right) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \times Z_{\text {ad }} \times H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ with convergence in appropriate topology (weak convergence of controls)

Define the family of nonlocal energies $\mathscr{J}^{\delta_{k}}: X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ as

$$
\mathscr{J}^{\delta_{k}}(u):=\iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x, y) \frac{k_{\delta_{k}}(x-y)}{|x-y|^{2}}|D u(x, y)|^{2} d x d y-\left\langle\overline{g_{k}}, u\right\rangle
$$

and the local energy $\mathscr{J}^{\text {loc }}: H^{1}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ as

$$
\mathscr{J}^{\mathrm{loc}}(u):=\int_{\Omega} \mathfrak{a}(x)\left(2\|\operatorname{Sym}(\nabla u(x))\|_{F}^{2}+\operatorname{div}(u(x))^{2}\right) d x-\left\langle g_{*}, u\right\rangle
$$

Proof of asymptotic compatibility

Step 1: Show that $B_{0}\left(u_{*}, v\right)=\left\langle g_{*}, v\right\rangle$ for all $\varphi \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ Construct a sequence $\left\{v_{k}\right\}_{k=1}^{\infty} \subset X_{\delta_{k}, h_{k}}$ so that $v_{k} \rightarrow v$ strongly in $H^{1}\left(\Omega ; \mathbb{R}^{n}\right)$. Then $B_{\delta_{k}}\left(\overline{u_{k}}, v_{k}\right)=\left\langle\overline{g_{k}}, v_{k}\right\rangle$, or equivalently,

$$
\mathscr{J}^{\delta_{k}}\left(\overline{u_{k}}\right) \leq \mathscr{J}^{\delta_{k}}\left(v_{k}\right)
$$

Then by Γ-convergence,

$$
\mathscr{J}^{\mathrm{loc}}\left(u_{*}\right) \leq \mathscr{J}^{\mathrm{loc}}(v) .
$$

Step 2: Show that $B_{0}\left(v, p_{*}\right)=\left\langle u_{*}, v\right\rangle$ for all $v \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ Strategy is identical to Step 1!

Proof of asymptotic compatibility (continued)

Step 3: Show that $g_{*}(x)=\mathbb{P}_{Z_{\text {ad }}}\left(-\frac{1}{\lambda} p_{*}(x)\right)$
Recall that $\overline{g_{k}}(x)=\mathbb{P}_{z_{\mathrm{ad}}}\left(-\frac{1}{\lambda} \Pi_{0} \overline{{p_{k}}_{k}}(x)\right)$, show $\Pi_{0} \overline{{p_{k}}_{k}} \rightarrow p_{*}$ strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$
Step 4: Unraveling

- Steps 1-3 and uniqueness of solutions to optimality system give $\bar{u}=u_{*}$, $\bar{g}=g_{*}$, and $\bar{p}=p_{*}$
- This is the limit point reached for any sub-sequence of original sequence
- Entire sequence of triples $\left\{\left(\overline{u_{k}}, \overline{g_{k}}, \overline{p_{k}}\right)\right\}_{k=1}^{\infty}$ converges to ($\bar{u}, \bar{g}, \bar{p}$)

Step 5: Strong convergence of controls Use the Lipschitz property of the projection and the estimate

$$
\left\|\overline{g_{k}}-\bar{g}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \lesssim\left\|\bar{p}-\Pi_{0} \overline{\bar{p}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}+\left\|\Pi_{0} \bar{p}-\Pi_{0} \overline{p_{k}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}
$$

Outline

(1) Overview and notation
(2) Well-posedness
(3) Variational convergence as $\delta \rightarrow 0^{+}$

Discretization

Asymptotic compatibility
(6) Implementation

Local control problem numerical test

Problem parameters: Tolerance $10^{-12}, n=2, \eta=0.01$, domain $\Omega:=B(0,2) \backslash B(0,1)$
Desired state: $\left(u_{\text {des }}\right)_{1}(x, y):=-y \sin (2 \theta) \cos (3 \pi r)(r-1)(r-2)$ and $\left(u_{\text {des }}\right)_{2}(x, y):=x \sin (2 \theta) \cos (3 \pi r)(r-1)(r-2)$, where $r:=\sqrt{x^{2}+y^{2}}$ and $\theta:=\tan ^{-1}\left(\frac{y}{x}\right)$

h	$\left\\|\overline{u_{h}}\right\\|_{L^{2}\left(\Omega ; \mathbb{R}^{2}\right)}$	$\left\\|\overline{u_{h}}\right\\|_{H^{1}\left(\Omega ; \mathbb{R}^{2}\right)}$	$\left\\|\overline{g_{h}}\right\\|_{L^{2}\left(\Omega ; \mathbb{R}^{2}\right)}$	Number of iterations
2^{-2}	0.0091437	0.0440521	0.312603	63
2^{-3}	0.0116019	0.0599568	0.388542	91
2^{-4}	0.0124453	0.0650956	0.412412	102
2^{-5}	0.0126701	0.0664565	0.418661	106
2^{-6}	0.0127272	0.0668017	0.420242	107
h	$\left\\|\overline{p_{H}}\right\\|_{L^{2}\left(\Omega ; \mathbb{R}^{2}\right)}$	$\left\\|\bar{p}_{h}\right\\|_{H^{1}\left(\Omega ; \mathbb{R}^{2}\right)}$	$j_{h}^{\text {loc }}\left(\overline{h_{h}}\right)$	$\left\\|\overline{u_{h}}-u_{\text {des }}\right\\|_{L^{2}\left(\Omega ; \mathbb{R}^{2}\right)}$
2^{-2}	0.00354106	0.0235156	0.0407674	0.283827
2^{-3}	0.00400814	0.0276332	0.0449658	0.297358
2^{-4}	0.00415522	0.0284508	0.0448784	0.296742
2^{-5}	0.00419442	0.0286662	0.0448501	0.296559
2^{-6}	0.00420437	0.0287208	0.0448428	0.296512

Local control problem simulations

(a) Vector field
(b) Pseudocolor plot

Figure: Local elasticity state on annular domain, $n=2, \eta=.001,6$ global refinements, tolerance 10^{-12}

Local control problem simulations (continued)

(a) Vector field
(b) Pseudocolor plot

Figure: Local elasticity control on annular domain, $n=2, \eta=.001,6$ global refinements, tolerance 10^{-12}

Challenges of nonlocal control code

Local contribution of bi-linear form ($T, T^{\prime} \in \mathscr{T}_{h}$):

$$
\mathcal{A}_{T, T^{\prime}}\left(\phi_{i}, \phi_{j}\right):=C_{n, s} \int_{T} \int_{T^{\prime}} \frac{\chi_{B(0, \delta)}(x-y)}{|x-y|^{n+2 s-2}} D \phi_{i}(x, y) D \phi_{j}(x, y) d x d y
$$

NOTE: Sample kernel: $k_{\delta}(\xi) \sim \frac{1}{|\xi|^{n+2 s-2}}$
Challenges/novelties:

- Domain: Ω and $\Omega_{\delta} \backslash \Omega$ are separately discretized with rectangular meshes, $\Omega=[0,1]^{n}$
- Dense stiffness matrix when $\delta \gg h$
- Must implement projected differences
- Near-field case has singularity that must be transformed via Duffy transforms
- Far-field case applies to $O\left(N^{2}\right)$ entries of stiffness matrix (away from main diagonal)
NOTE: One advantage from an efficiency advantage is that $\operatorname{supp}\left(k_{\delta}\right) \subset B(0, \delta)$, meaning we can omit calculations for some far-field integrations

Recap and closing

- Showed existence and uniqueness of minimizers
- Considered behavior as $\delta \rightarrow 0^{+}$
- Discretized via FEMs
- Studied simultaneous limit as $\delta, h \rightarrow 0^{+}$(asymptotic compatibility) Thank you! Questions?

ArXiV preprint: https://arxiv.org/pdf/2304.09328.pdf
Published in Journal of Applied Math and Optimization

Auxiliary Lemmas

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that

$$
\frac{c}{|\xi|^{n+2 s}} \leq \frac{k_{\delta}(\xi)}{|\xi|^{2}} \leq \frac{C}{|\xi|^{n+2 s}}
$$

holds for all $\xi \in B(0, \delta)$, for some $s \neq \frac{1}{2}$. Then necessarily $\overline{g_{\delta}} \in X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$.
Proof strategy:

- Mengesha-Du 2016 says that $H^{s}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)=X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$ here
- Use projection formula $\overline{\bar{g}}(x)=-\frac{1}{\lambda} \mathbb{P}_{Z_{\mathrm{ad}}}\left(\overline{p_{\delta}}(x)\right)$
- This pointwise projection is continuous in H^{s} semi-norm but not X semi-norm!

Auxiliary Lemmas (continued)

Lemma (Approximation)

If $w \in L^{2}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$, then

$$
\left\|\Pi_{0} w-w\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \leq \omega(h),
$$

where $\Pi_{0}: L^{2}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \rightarrow Z_{h}$ denotes the projection of a function onto the piecewise constants with respect to the given mesh. If in fact $w \in X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$ and k_{δ} satisfies the fractional inequality on $B(0, \delta)$ for some $s \neq \frac{1}{2}$, then

$$
\left\|\Pi_{0} w-w\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \lesssim h^{5}\|w\|_{X\left(\Omega_{;} ; \mathbb{R}^{n}\right)} .
$$

Back

Control Convergence (continued)

Galerkin Approximations:

 $q_{\delta, h} \in X_{\delta, h}$ be the Galerkin approximation to $\overline{p_{\delta}}$, i.e., the solution of$$
B_{\delta}\left(v_{\delta, h}, q_{\delta, h}\right)=\left\langle\overline{u_{\delta}}, v_{\delta, h}\right\rangle \quad \forall v_{\delta, h} \in X_{\delta, h} .
$$

$U_{\delta, h} \in X_{\delta, h}$ for $\overline{u_{\delta}}:$

$$
B_{\delta}\left(U_{\delta, h}, v_{\delta, h}\right)=\left\langle\overline{g_{\delta}}, v_{\delta, h}\right\rangle \quad \forall v_{\delta, h} \in X_{\delta, h} .
$$

$r_{\delta, h} \in X_{\delta, h}$ solves

$$
B_{\delta}\left(v_{\delta, h}, r_{\delta, h}\right)=\left\langle U_{\delta, h}, v_{\delta, h}\right\rangle \quad \forall v_{\delta, h} \in X_{\delta, h} .
$$

-Back

Control Convergence (continued)

Let $I_{1}:=\left\langle\overline{p_{\delta}}-\overline{p_{\delta, h}}, \overline{g_{\delta, h}}-\overline{g_{\delta}}\right\rangle$ and $I_{2}:=\left\langle\overline{p_{\delta, h}}+\eta \overline{g_{\delta, h}}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle$. Using optimality conditions gives

$$
\begin{gathered}
\eta\left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2} \leq I_{1}+I_{2} . \\
I_{1}=\left\langle\overline{p_{\delta}}-q_{\delta, h}, \overline{g_{\delta, h}}-\overline{g_{\delta}}\right\rangle+\left\langle q_{\delta, h}-r_{\delta, h}, \overline{g_{\delta, h}}-\overline{g_{\delta}}\right\rangle+\left\langle r_{\delta, h}-\overline{p_{\delta, h}}, \overline{g_{\delta, h}}-\overline{g_{\delta}}\right\rangle=: \\
I_{1,1}+I_{1,2}+I_{1,3} .
\end{gathered}
$$

By use of Galerkin approximations, find that $I_{1,3} \leq 0$ and

$$
\begin{aligned}
& I_{1,1} \lesssim\left\|\overline{\delta_{\delta, h}}-\overline{g_{\delta}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} ; \\
& I_{1,2} \lesssim\left\|\overline{\delta_{\delta, h}}-\overline{g_{\delta}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} .
\end{aligned}
$$

Control Convergence (continued)

By Young's Inequality,

$$
\begin{aligned}
I_{1} \leq & \frac{\eta}{3}\left\|\overline{g_{\delta, h}}-\overline{g_{\delta}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}+C\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2}+ \\
& C\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta ;} ; \mathbb{R}^{n}\right)}\right)^{2} .
\end{aligned}
$$

Control Convergence (continued)

Now we write I_{2} as

$$
\begin{aligned}
& \left\langle\overline{p_{\delta, h}}+\eta \overline{g_{\delta, h}}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle=\left\langle\overline{p_{\delta}}+\eta \overline{g_{\delta}}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle+\lambda\left\langle\overline{g_{\delta, h}}-\overline{g_{\delta}}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle+ \\
& \left\langle\overline{p_{\delta, h}}-r_{\delta, h}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle+\left\langle r_{\delta, h}-q_{\delta, h}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle+\left\langle q_{\delta, h}-\overline{p_{\delta}}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle=: \\
& I_{2,1}+I_{2,2}+I_{2,3}+I_{2,4}+I_{2,5} .
\end{aligned}
$$

Control Convergence (continued)

Use that $\Pi_{0}\left(\overline{p_{\delta}}+\eta \overline{g_{\delta}}\right)=0$ to estimate $I_{2,1}$ as

$$
I_{2,1} \leq \omega(h)
$$

For $I_{2,2}$, use Cauchy and stability:

$$
I_{2,2} \leq \frac{\eta}{3}\left\|\overline{g_{\delta, h}}-\overline{g_{\delta}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}+\omega(h)
$$

Control Convergence (continued)

For $I_{2,3}$, use Galerkin approximations and the stabilty:

$$
I_{2,3} \leq \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2}
$$

For $I_{2,4}$ and $I_{2,5}$, use Ceá's lemma and Cauchy:

$$
\begin{aligned}
& I_{2,4} \leq \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2} ; \\
& I_{2,5} \leq \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2} .
\end{aligned}
$$

Control Convergence (continued)

Use Young's Inequality and combine all the estimates to get

$$
\begin{aligned}
\frac{\eta}{3}\left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2} \lesssim & \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2}+ \\
& \left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2} .
\end{aligned}
$$

Back

