
An Optimal Control Problem in Peridynamics:
Analysis and Discretization

Joshua Siktar
jsiktar@vols.utk.edu

Texas A&M Numerical Analysis Seminar

May 1, 2024



Acknowledgments

Thanks to my co-advisors Abner Salgado and Tadele Mengesha for their
continued mentorship
Thanks to Alan Demlow for arranging this visit
Thanks to NSF grant 2111228 for financial support



Problem statement

Find (uδ, gδ) ∈ X0 × Zad such that

I(uδ, gδ) = min
gδ∈L2,uδ∈X0

{ˆ
Ω

F (x , uδ(x))dx + η

2

ˆ
Ω

Λ(x)|g(x)|2dx
}

,

over pairs (uδ, gδ) ∈ X0 × Zad that satisfy some state equation

Bδ(uδ, wδ) =
ˆ

Ω
gδ(x) · wδ(x), ∀wδ ∈ X0.

where δ ≥ 0 is the degree of nonlocality. Here gδ is an external force and uδ

represents the displacement
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Overview and notation

Motivation and origins

For our problem the nonlocal operator is

Lδu(x) = 1
2

ˆ
Ωδ

A(x , y)kδ(|x − y |)Du(x , y)
|x − y |

y − x
|x − y |

dy

Nonlocal equations [or systems] take the form{
Lδu = g , x ∈ Ω
u = 0, x ∈ Ωδ \ Ω

Common in solid state mechanics, including peridynamics



Overview and notation

Motivation and origins (continued)

Definition (PD)
Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals
over derivatives, attributed to Stewart A. Silling

Features:
Exchanges derivatives in continuum models for integrals (helps address crack
formation)
Treats particles as having a bond between them (bond-based model)
Range of interaction parameterized by δ, called horizon
Material parameters represented by a(x) (e.g., density)
Operator is elliptic (not parabolic or hyperbolic)



Overview and notation

Sample candidate integrand



Overview and notation

Goals

Show existence and uniqueness of minimizers (well-posedness)
Consider variational convergence as δ → 0+

Discretize via FEM (δ fixed, h → 0+)
Study simultaneous limit as δ, h → 0+ (asymptotic compatibility)
Implementation/numerical results



Overview and notation

Properties of kernels

Kernel sequence {kδ}δ>0 radial, integrable, non-negative, supported in B(0, δ),
kδ(r)r−2 is nonincreasing, and

lim
δ→0+

ˆ
Rn

kδ(ξ)dξ = δ0

Also, for all δ > 0: ˆ
Rn

kδ(ξ)dξ = 1

lim
t→∞

ˆ
Rn\B(0,t)

kδ(ξ)dξ = 0



Overview and notation

Notation

Let Ω ⊂ Rn be a bounded domain, Ωδ := Ω ∪ {x , dist(x , ∂Ω) < δ}
Ωδ \ Ω is nonlocal boundary
Dδ := (Ω × Ωδ) ∪ (Ωδ × Ω)
Projected difference: Du(x , y) := (u(x)−u(y))·(x−y)

|x−y | , nonlocal linearized strain
(for vector-valued functions)
Our material coefficient function is

A(x , y) := a(x) + a(y)
2 ,

where there exist amin, amax > 0 so amin ≤ a ≤ amax on Ωδ.



Overview and notation

Bi-linear forms

Nonlocal bi-linear form:

Bδ(u, v) := 1
2

¨
Dδ

A(x , y)kδ(x − y)Du(x , y)
|x − y |

Dv(x , y)
|x − y |

dxdy

Local bi-linear form:

B0(u, v) := C(n)
ˆ

Ω
a(x)(2⟨Sym(▽u), Sym(▽v)⟩F + div(u)div(v))dx ,

with C(n) = 1
(n+2)(n+4)

Inner products denoted ⟨·, ·⟩Y ; L2-inner product denoted ⟨·, ·⟩



Overview and notation

Function spaces and norms

Our function space is based on Bδ :

X (Ωδ;Rn) := {u|Ω∈ L2(Ω;Rn) | Bδ(u, u) < ∞}

Version with zero nonlocal boundary data:

X0(Ωδ;Rn) := {u ∈ X (Ωδ;Rn) | u = 0 in Ωδ \ Ω}

Underlying norm on X (Ωδ;Rn):

∥u∥X(Ωδ ;Rn) := ∥u∥L2(Ωδ ;Rn)+
1
2

¨
Dδ

kδ(x − y) |Du(x , y)|2
|x − y |2

dxdy



Overview and notation

Cost functional assumptions

I(u, g) :=
ˆ

Ω
F (x , u(x))dx + η

2

ˆ
Ω

Λ(x)|g(x)|2dx

Here Zad is a nonempty, closed, convex, and bounded subset of L2(Ω;Rn), taking
the form

Zad = {z ∈ L∞(Ω;Rn) | a ⪯ z ⪯ b}

Here [a]i ≤ [b]i for all i ∈ {1, 2, . . . , n} with a = ([a]1, . . . , [a]n) and
b = ([b]1, . . . , [b]n) being vector fields in L2(Ω;Rn), η ≥ 0, and Γ ∈ L∞(Ω) is
strictly positive.



Overview and notation

Cost functional assumptions (continued)

The integrand F : Ω × Rn → R possesses the following properties:
1 For all v ∈ Rn the mapping x 7→ F (x , v) is measurable;
2 For all x ∈ Ω the mapping v 7→ F (x , v) is continuous and convex;
3 There exist c1 > 0 and ℓ ∈ L1(Ω)

|F (x , v)| ≤ c1|v |2+ℓ(x)

for all x ∈ Ω, v ∈ Rn.



Overview and notation

Admissible classes

Aδ := {(v , f ) ∈ X0(Ωδ;Rn) × Zad |
v solves state system with right hand side f for any w ∈ X0(Ωδ;Rn)}

Aloc := {(v , f ) ∈ H1
0 (Ω;Rn)×Zad | v solves local BVP for any w ∈ H1

0 (Ω;Rn)}
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Well-posedness

Structural properties

(X (Ωδ;Rn), ∥·∥X ) and (X0(Ωδ;Rn), ∥·∥X ) are Hilbert
Can extend u ∈ X0(Ωδ;Rn) by zero to any open set B ⊃ Ωδ, including Rn.
H1(Ωδ;Rn) ↪→ X (Ωδ;Rn)
X (Ωδ;Rn) ⋐ L2(Ωδ;Rn)



Well-posedness

Nonlocal Poincaré-Korn Inequality

Proposition (Mengesha-Du 2014)
There exists a δ0 > 0 and a constant C(δ0) > 0 such that for all δ ∈ (0, δ0] and
u ∈ X0(Ωδ;Rn),

∥u∥2
L2(Ω;Rn) ≤ C(δ0)

ˆ
Ωδ

ˆ
Ωδ

kδ(x − y)|Du(x , y)|2
|x − y |2

dxdy .

Notes:
The assumption of kδ(r)r−2 being non-increasing is needed in the proof
The projected difference vanishes under infinitesimal rigid displacements



Well-posedness

State equation is well-posed!

Theorem (Existence and Uniqueness for State Equation)

For any gδ ∈ Zad, there exists a unique uδ ∈ X0(Ωδ;Rn) such that the state system

Bδ(uδ, w) = ⟨gδ, w⟩

is satisfied for all w ∈ X0(Ωδ;Rn). Furthermore, we have the stability estimate

∥uδ∥X(Ωδ ;Rn) ≲ ∥gδ∥X(Ωδ ;Rn)∗

for some constant independent of δ.



Well-posedness

Well-posedness of optimal control problem

Theorem (Well-posedness)

There exists (uδ, gδ) ∈ Aδ minimizing

I(uδ, gδ) =
ˆ

Ω
F (x , uδ(x))dx + η

2

ˆ
Ω

Λ(x)|gδ(x)|2dx ,

where (uδ, gδ) solves

Bδ(uδ, vδ) =
ˆ

Ω
gδ(x) · vδ(x)dx ∀vδ ∈ X0

Furthermore, if F is strictly convex or η > 0, then the minimizer is unique.
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Variational convergence as δ → 0+

Needed compactness result

Proposition (Mengesha-Du 2014)
Suppose {uδ}δ>0 ⊂ L2(Ω;Rn) is a bounded family of vector fields such that

sup
δ>0

ˆ
Ωδ

ˆ
Ωδ

kδ(x − y) |Duδ(x , y)|2
|x − y |2

dxdy < ∞,

where kδ(r)r−2 is nonincreasing; then the family has compact closure in
L2(Ω;Rn), and any limit point u belongs to H1(Ωδ;Rn)

In fact, we can show u ∈ H1
0 (Ω;Rn)!



Variational convergence as δ → 0+

Local and nonlocal energies

Define for u ∈ L2(Ω;Rn):

Eδ(u) :=
¨

Dδ

A(x , y)kδ(x − y) |Du(x , y)|2
|x − y |2

dxdy ;

E0(u) := C(n)
ˆ

Ω
a(x)(2∥Sym(▽u(x))∥2

F +div(u(x))2)dx

where C(n) := 1
(n+2)(n+4) , and ∥·∥F is the Fröbenius norm. Take to be +∞ when

not well-defined



Variational convergence as δ → 0+

Minimization of local functional

Theorem

Suppose {(uδ, gδ)}δ>0 is the family of solutions to the nonlocal control problem.
Then, there is (u, g) such that uδ → u in L2(Ω;Rn) and gδ ⇀ g in L2(Ω;Rn).
Moreover, (u, g) solves the local optimal control problem.

Notice {uδ}δ>0 have bounded semi-norm so compactness gives
u ∈ H1

0 (Ω;Rn)
Notice {gδ}δ>0 are bounded in L2(Ω;Rn) so reflexivity gives g ∈ Zad

Need minimization to be preserved in limit!



Variational convergence as δ → 0+

Γ-Convergence

Theorem
We say that the family Eδ : L2(Ω;Rn) → R ∪ {+∞} Γ-converges strongly in
L2(Ω;Rn) to E0 : L2(Ω;Rn) → R ∪ {+∞} (denoted Eδ

Γ−→ E0). That is, the
following hold:
i) The liminf inequality: Assume uδ → u strongly in L2(Ω;Rn). Then

E0(u) ≤ liminfδ→0+Eδ(uδ)

ii) Recovery sequence property: For each u ∈ L2(Ω;Rn), there exists a
sequence {uδ}δ>0 where uδ → u strongly in L2(Ω;Rn) and

limsupδ→0+Eδ(uδ) ≤ E0(u)



Variational convergence as δ → 0+

Convergence of Minimizers for Energies

Corollary
If {vδ}δ>0 is a sequence of minimizers for {Eδ}δ>0 over L2(Ω;Rn), v is a limit
point of this sequence, and Eδ

Γ−→ E0, then v is a minimizer of E0 on L2(Ω;Rn).
Finally,

lim
δ→0+

Eδ(uδ) − ⟨gδ, uδ⟩ = E0(u) − ⟨g , u⟩



Variational convergence as δ → 0+

Tying together optimal control

Final step: Show (u, g) ∈ Aloc solves local control problem
For any (v , f ) ∈ Aloc,

I(u, g) ≤ lim
δ→0+

I(uδ, gδ) ≤ lim
δ→0+

I(vδ, f ) ≤ I(v , f ),

where (vδ, f ) are solutions to the nonlocal state equation.
NOTE: Can improve convergence of controls to strong L2 using a projection
formula!

gδ(x) = PZad

(
− 1

λ
pδ(x)

)
,

g(x) = PZad

(
− 1

λ
p(x)

)
,

where pδ, p are the optimal adjoints.
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Discretization

Nonlocal discrete problem statement

Find (uδ,h, gδ,h) ∈ Xδ,h × Zh such that

I(uδ,h, gδ,h) = min
uδ,h∈Xδ,h, gδ,h∈Zh

I(uδ,h, gδ,h),

over pairs (uδ,h, gδ,h) ∈ Xδ,h × Zh that satisfy

Bδ(uδ,h, vδ,h) = ⟨gδ,h, vδ,h⟩, ∀vδ,h ∈ Xδ,h.

Recap:
I(uδ,h, gδ,h) :=

ˆ
Ω

F (x , uδ,h(x))dx + η

2∥gδ,h∥2
L2(Ω;Rn)

Henceforth assume Γ ≡ 1



Discretization

Local discrete problem statement

Find (uh, gh) ∈ Xh × Zh such that

I(uh, gh) = min
uh∈Xh, gh∈Zh

I(uh, gh),

over pairs (uh, gh) ∈ Xh × Zh that satisfy

B0(uh, vh) = ⟨gh, vh⟩, ∀vh ∈ Zh.



Discretization

Notation

Mesh family: {Th}h>0 (discretizing Ωδ) shape-regular and quasi-uniform
Piecewise polynomials of degree m (with respect to our mesh):

Pm(T ;Rn) :=


∑

α∈Nn
0 :

∑n
i=1

αi ≤m

vαxα1
1 · · · xαn

n

∣∣∣∣∣∣∣ vα ∈ Rn, (xi)n
i=1 ∈ T


Discretized state space: Xδ,h := Xh := {wh ∈ C0(Ωδ;Rn) | wh|T ∈
P1(T ;Rn) ∀T ∈ Th, wh = 0 on Ωδ \ Ω}
Discretized control space: Zh := {zh|T ∈ P0(T ;Rn) ∀T ∈ Th}
Π0 : Zad → Zh is piecewise constant projection by averages on each triangle



Discretization

Notation (continued)

Nonlocal discrete control space: (Xδ,h, ∥·∥X )
Local discrete control space (Xh, ∥·∥H1)

Aδ
h := {(wδ,h, fδ,h) ∈ Xδ,h × Zh |

wδ,h solves system with right-hand side fδ,h for any vδ,h ∈ Xδ,h}

Aloc
h := {(wh, fh) ∈ Xh × Zh |

wh solves local system with right-hand side fh for any vh ∈ Xh}



Discretization

Optimality conditions preliminaries

Reduced cost functional:

jδ(gδ) :=
ˆ

Ω
F (x , Sδgδ(x))dx + η

2∥gδ∥2
L2(Ω;Rn)

Assume now that
F (x , v) := 1

2 |v |2.

First-order necessary condition:

⟨j ′
δ(gδ), γz − gδ⟩ ≥ 0 ∀γz ∈ Zad



Discretization

Optimality conditions

Nonlocal continuous optimality conditions (including adjoint)

⟨pδ + ηgδ, γz − gδ⟩ ≥ 0, ∀γz ∈ Zad

pδ = S∗
δ Fu(·, uδ) = SδFu(·, uδ)

uδ = Sδgδ.

Projection formula:

gδ(x) = PZad

(
− 1

λ
pδ(x)

)
.

NOTE: No second-order optimality conditions needed (strict convexity!)



Discretization

Optimality conditions (discretized)

Nonlocal discrete optimality conditions (including adjoint)

⟨pδ,h + ηgδ,h, γh − gδ,h⟩ ≥ 0, ∀γh ∈ Zad ∩ Zh

pδ,h = S∗
δ,hFu(·, uδ,h) = Sδ,hFu(·, uδ,h)

uδ,h = Sδ,hgδ,h.

Projection formula:

gδ,h(x) = PZad

(
−1

η
Π0pδ,h(x)

)



Discretization

Intermediary functions

By Lax-Milgram, we may define ûδ, p̂δ ∈ X0(Ωδ;Rn) such that

Bδ(ûδ, vδ) = ⟨gδ,h, vδ⟩ ∀vδ ∈ X0(Ωδ;Rn);

Bδ(vδ, p̂δ) = ⟨vδ, uδ,h⟩ ∀vδ ∈ X0(Ωδ;Rn);

also define ûh, p̂h ∈ H1
0 (Ω;Rn) such that

B0(ûh, v) = ⟨gh, v⟩ ∀v ∈ H1
0 (Ω;Rn);

B0(v , p̂h) = ⟨v , ûh⟩ ∀v ∈ H1
0 (Ω;Rn).



Discretization

State and adjoint error estimate

Theorem (State and Adjoint Error Estimates)

Suppose that (uδ,h, gδ,h) is the solution to the nonlocal discrete problem, pδ,h
solves the discrete adjoint equation given uδ,h; (uδ, gδ) is the solution to the
nonlocal continuous problem; and pδ solves the continuous adjoint equation given
uδ. Then

∥uδ − uδ,h∥X(Ωδ ;Rn) ≲ inf
vδ,h∈Xδ,h

∥ûδ − vδ,h∥X(Ωδ ;Rn)+∥gδ − gδ,h∥L2(Ω;Rn);

∥pδ − pδ,h∥X(Ωδ ;Rn) ≲ inf
vδ,h∈Xδ,h

∥p̂δ − vδ,h∥X(Ωδ ;Rn)+

inf
vδ,h∈Xδ,h

∥ûδ − vδ,h∥X(Ωδ ;Rn)+∥gδ − gδ,h∥L2(Ω;Rn)



Discretization

State and adjoint error estimates (continued)

Proof strategy for state error:
Test with vδ := uδ − ûδ in state system and intermediary equation, subtract
Use Hölder Inequality to get ∥uδ − ûδ∥X(Ωδ ;Rn) ≲ ∥gδ − gδ,h∥L2(Ω;Rn)

Use Ceá’s Lemma on space Xδ,h

Note: Adjoint error estimate proven by same strategy



Discretization

State and adjoint error estimates (local)

Theorem
Let (u, g) denote the solution to the local continuous problem, while (uh, gh) is
the solution to the local discrete problem. Assume also that p denotes the
solution to the continuous adjoint problem, while ph solves the discrete adjoint
problem. Then,

∥u − uh∥H1(Ω;Rn) ≲ inf
vh∈Xh

[ûh − vh]H1(Ω;Rn) + ∥g − gh∥L2(Ω;Rn);

∥p−ph∥H1(Ω;Rn) ≲ inf
vδ,h∈Xh

[p̂h −vh]H1(Ω;Rn) + inf
vh∈Xh

[ûh −vh]H1(Ω;Rn) +∥g −gh∥L2(Ω;Rn).



Discretization

Control convergence

Theorem (Convergence of Controls)

Assume that gδ is the optimal control associated with the nonlocal continuous
problem, and gδ,h be the discrete optimal control. Then we have the convergence

∥gδ − gδ,h∥L2(Ω;Rn) ≲ ω(h) + inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn)

+ inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn).

Proof



Discretization

Nonlocal problem convergence: summary

Corollary (Full Norm Solution Convergence)

In the setting of our problem formulation,

∥uδ − uδ,h∥X(Ωδ ;Rn) ≲ ω(h) + inf
vδ,h∈Xδ,h

∥ûδ − vδ,h∥X(Ωδ ;Rn)+

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn);

∥pδ−pδ,h∥X(Ωδ ;Rn) ≲ ω(h)+ inf
vδ,h∈Xδ,h

∥p̂δ−vδ,h∥X(Ωδ ;Rn)+ inf
vδ,h∈Xδ,h

∥ûδ−vδ,h∥X(Ωδ ;Rn)

+ inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn).



Discretization

Local convergence results

Theorem
Suppose (u, g) denotes the solution to the local continuous problem, while
(uh, gh) is the solution to the local discrete problem, and p and ph solve the
respective adjoint problems. We have the estimates

∥u − uh∥H1(Ω;Rn) ≲ inf
vh∈Xh

[û − vh]H1(Ω;Rn) + ∥g − gh∥L2(Ω;Rn);

∥p − p∥H1(Ω;Rn) ≲ inf
vh∈Xh

[p̂ − vh]H1(Ω;Rn) + inf
vh∈Xh

[û − vh]H1(Ω;Rn) + ∥g − gh∥L2(Ω;Rn).

∥g − gh∥L2(Ω;Rn) ≲ h + inf
vh∈Xh

[p − vh]H1(Ω;Rn) + inf
vh∈Xh

[u − vh]H1(Ω;Rn).



Discretization

Discrete analogues of convergence

Proposition (Γ-convergence of discrete problems)

We have that Eδ
Γ−→ E0 in the family of spaces {Xδ,h}δ>0 in the strong L2(Ω;Rn)

topology.

Theorem (Discrete Convergence)

Suppose {(uδ,h, gδ,h)}δ>0 ∈ Aδ
h is the family of solutions to the nonlocal discrete

problem. Then, there is (uh, gh) ∈ Aloc
h such that uδ,h → uh in L2(Ω;Rn) and

gδ,h → gh in L2(Ω;Rn). Moreover, (uh, gh) solves the local discrete optimal
control problem.
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Asymptotic compatibility

What is asymptotic compatibility?

Introduced by X. Tian and Q. Du (2014)
Originally developed for linear, non-local state equations

Lδ,huδ,h = f

Guarantees unconditional convergence of approximations in both
discretization and horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions {uδ,h}δ,h>0 is
asymptotically compatible in δ, h > 0 if for any sequences {δk}∞

k=1, {hk}∞
k=1

with δk , hk → 0, we have that uδk ,hk → u0 strongly in some Hilbert space norm,
where u0 is the solution to a local, continuous problem.

uδ,h uh

uδ u0

h→0+ k→∞

δ→0+

h→0+

δ→0+



Asymptotic compatibility

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions {(uδ,h, gδ,h)}h>0,δ>0 to the nonlocal discrete
optimal control problem is asymptotically compatible in δ, h > 0 if for any
sequences {δk}∞

k=1, {hk}∞
k=1 with δk , hk → 0, we have that gδk ,hk → g strongly in

L2(Ω;Rn), and uδk ,hk → u strongly in L2(Ω;Rn). Here (u, g) ∈ H1
0 (Ω;Rn) × Zad

denotes the optimal solution for the local continuous problem.

(uδ,h, gδ,h) (uh, gh)

(uδ, gδ) (u, g)

h→0+ k→∞

δ→0+

h→0+

δ→0+



Asymptotic compatibility

Asymptotic compatibility: result and notation

Theorem
Our family of discrete optimal control problems is asymptotically compatible as
δ, h → 0+, and limk→∞ I(uδk ,hk , gδk ,hk ) = I(u, g).

For convenience denote (uk , gk , pk) := (uδk ,hk , gδk ,hk , pδk ,hk ).

Step 0: Pick sub-sequence of {(uk , gk , pk)}∞
k=1 so there is a limit point

(u∗, g∗, p∗) ∈ H1
0 (Ω;Rn) × Zad × H1

0 (Ω;Rn) with convergence in appropriate
topology (weak convergence of controls)

Define the family of nonlocal energies J δk : X (Ωδ;Rn) → R as

J δk (u) :=
¨

Dδ

A(x , y)kδk (x − y)
|x − y |2

|Du(x , y)|2dxdy − ⟨gk , u⟩

and the local energy J loc : H1(Ω;Rn) → R as

J loc(u) :=
ˆ

Ω
a(x)(2∥Sym(▽u(x))∥2

F +div(u(x))2)dx − ⟨g∗, u⟩



Asymptotic compatibility

Proof of asymptotic compatibility

Step 1: Show that B0(u∗, v) = ⟨g∗, v⟩ for all φ ∈ H1
0 (Ω;Rn)

Construct a sequence {vk}∞
k=1 ⊂ Xδk ,hk so that vk → v strongly in H1(Ω;Rn).

Then Bδk (uk , vk) = ⟨gk , vk⟩, or equivalently,

J δk (uk) ≤ J δk (vk)

Then by Γ-convergence,
J loc(u∗) ≤ J loc(v).

Step 2: Show that B0(v , p∗) = ⟨u∗, v⟩ for all v ∈ H1
0 (Ω;Rn)

Strategy is identical to Step 1!



Asymptotic compatibility

Proof of asymptotic compatibility (continued)

Step 3: Show that g∗(x) = PZad

(
− 1

λ p∗(x)
)

Recall that gk(x) = PZad

(
− 1

λ Π0pk(x)
)
, show Π0pk → p∗ strongly in L2(Ω;Rn)

Step 4: Unraveling
Steps 1-3 and uniqueness of solutions to optimality system give u = u∗,
g = g∗, and p = p∗

This is the limit point reached for any sub-sequence of original sequence
Entire sequence of triples {(uk , gk , pk)}∞

k=1 converges to (u, g , p)

Step 5: Strong convergence of controls
Use the Lipschitz property of the projection and the estimate

∥gk − g∥L2(Ω;Rn) ≲ ∥p − Π0p∥L2(Ω;Rn)+∥Π0p − Π0pk∥L2(Ω;Rn)
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Local control problem numerical test

Problem parameters: Tolerance 10−12, n = 2, η = 0.01, domain
Ω := B(0, 2) \ B(0, 1)
Desired state: (udes)1(x , y) := −y sin(2θ) cos(3πr)(r − 1)(r − 2) and
(udes)2(x , y) := x sin(2θ) cos(3πr)(r − 1)(r − 2), where r :=

√
x2 + y2 and

θ := tan−1 ( y
x
)

h ∥uh∥L2(Ω;R2) ∥uh∥H1(Ω;R2) ∥gh∥L2(Ω;R2) Number of iterations
2−2 0.0091437 0.0440521 0.312603 63
2−3 0.0116019 0.0599568 0.388542 91
2−4 0.0124453 0.0650956 0.412412 102
2−5 0.0126701 0.0664565 0.418661 106
2−6 0.0127272 0.0668017 0.420242 107
h ∥ph∥L2(Ω;R2) ∥ph∥H1(Ω;R2) j loc

h (gh) ∥uh − udes∥L2(Ω;R2)
2−2 0.00354106 0.0235156 0.0407674 0.283827
2−3 0.00400814 0.0276332 0.0449658 0.297358
2−4 0.00415522 0.0284508 0.0448784 0.296742
2−5 0.00419442 0.0286662 0.0448501 0.296559
2−6 0.00420437 0.0287208 0.0448428 0.296512
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Local control problem simulations

(a) Vector field (b) Pseudocolor plot

Figure: Local elasticity state on annular domain, n = 2, η = .001, 6 global refinements,
tolerance 10−12



Implementation

Local control problem simulations (continued)

(a) Vector field (b) Pseudocolor plot

Figure: Local elasticity control on annular domain, n = 2, η = .001, 6 global
refinements, tolerance 10−12
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Challenges of nonlocal control code

Local contribution of bi-linear form (T , T ′ ∈ Th):

AT ,T ′(ϕi , ϕj) := Cn,s

ˆ
T

ˆ
T ′

χB(0,δ)(x − y)
|x − y |n+2s−2 Dϕi(x , y)Dϕj(x , y)dxdy

NOTE: Sample kernel: kδ(ξ) ∼ 1
|ξ|n+2s−2

Challenges/novelties:
Domain: Ω and Ωδ \ Ω are separately discretized with rectangular meshes,
Ω = [0, 1]n

Dense stiffness matrix when δ >> h
Must implement projected differences
Near-field case has singularity that must be transformed via Duffy transforms
Far-field case applies to O(N2) entries of stiffness matrix (away from main
diagonal)

NOTE: One advantage from an efficiency advantage is that supp(kδ) ⊂ B(0, δ),
meaning we can omit calculations for some far-field integrations
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Recap and closing

Showed existence and uniqueness of minimizers
Considered behavior as δ → 0+

Discretized via FEMs
Studied simultaneous limit as δ, h → 0+ (asymptotic compatibility)

Thank you! Questions?

ArXiV preprint: https://arxiv.org/pdf/2304.09328.pdf
Published in Journal of Applied Math and Optimization

https://arxiv.org/pdf/2304.09328.pdf 
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Auxiliary Lemmas

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that
c

|ξ|n+2s ≤ kδ(ξ)
|ξ|2

≤ C
|ξ|n+2s

holds for all ξ ∈ B(0, δ), for some s ̸= 1
2 . Then necessarily gδ ∈ X (Ωδ;Rn).

Proof strategy:
Mengesha-Du 2016 says that Hs(Ωδ;Rn) = X (Ωδ;Rn) here
Use projection formula gδ(x) = − 1

λPZad(pδ(x))
This pointwise projection is continuous in Hs semi-norm but not X
semi-norm!
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Auxiliary Lemmas (continued)

Lemma (Approximation)

If w ∈ L2(Ωδ;Rn), then

∥Π0w − w∥L2(Ω;Rn) ≤ ω(h),

where Π0 : L2(Ωδ;Rn) → Zh denotes the projection of a function onto the
piecewise constants with respect to the given mesh. If in fact w ∈ X (Ωδ;Rn) and
kδ satisfies the fractional inequality on B(0, δ) for some s ̸= 1

2 , then

∥Π0w − w∥L2(Ω;Rn) ≲ hs∥w∥X(Ωδ ;Rn).

Back
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Control Convergence (continued)

Galerkin Approximations:
qδ,h ∈ Xδ,h be the Galerkin approximation to pδ, i.e., the solution of

Bδ(vδ,h, qδ,h) = ⟨uδ, vδ,h⟩ ∀vδ,h ∈ Xδ,h.

Uδ,h ∈ Xδ,h for uδ:

Bδ(Uδ,h, vδ,h) = ⟨gδ, vδ,h⟩ ∀vδ,h ∈ Xδ,h.

rδ,h ∈ Xδ,h solves

Bδ(vδ,h, rδ,h) = ⟨Uδ,h, vδ,h⟩ ∀vδ,h ∈ Xδ,h.

Back
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Control Convergence (continued)

Let I1 := ⟨pδ − pδ,h, gδ,h − gδ⟩ and I2 := ⟨pδ,h + ηgδ,h, Π0gδ − gδ⟩. Using
optimality conditions gives

η∥gδ − gδ,h∥2
L2(Ω;Rn) ≤ I1 + I2.

I1 = ⟨pδ − qδ,h, gδ,h − gδ⟩ + ⟨qδ,h − rδ,h, gδ,h − gδ⟩ + ⟨rδ,h − pδ,h, gδ,h − gδ⟩ =:
I1,1 + I1,2 + I1,3.

By use of Galerkin approximations, find that I1,3 ≤ 0 and

I1,1 ≲ ∥gδ,h − gδ∥L2(Ω;Rn) inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn);

I1,2 ≲ ∥gδ,h − gδ∥L2(Ω;Rn) inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn).
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Control Convergence (continued)

By Young’s Inequality,

I1 ≤ η

3∥gδ,h − gδ∥2
L2(Ω;Rn)+C

(
inf

vδ,h∈Xδ,h
[uδ − vδ,h]X(Ωδ ;Rn)

)2
+

C
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.
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Control Convergence (continued)

Now we write I2 as

⟨pδ,h + ηgδ,h, Π0gδ − gδ⟩ = ⟨pδ + ηgδ, Π0gδ − gδ⟩ + λ⟨gδ,h − gδ, Π0gδ − gδ⟩+
⟨pδ,h − rδ,h, Π0gδ − gδ⟩ + ⟨rδ,h − qδ,h, Π0gδ − gδ⟩ + ⟨qδ,h − pδ, Π0gδ − gδ⟩ =:
I2,1 + I2,2 + I2,3 + I2,4 + I2,5.
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Control Convergence (continued)

Use that Π0(pδ + ηgδ) = 0 to estimate I2,1 as

I2,1 ≤ ω(h).

For I2,2, use Cauchy and stability:

I2,2 ≤ η

3∥gδ,h − gδ∥2
L2(Ω;Rn)+ω(h),
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Control Convergence (continued)

For I2,3, use Galerkin approximations and the stabilty:

I2,3 ≤ ω(h)2 +
(

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn)

)2

For I2,4 and I2,5, use Ceá’s lemma and Cauchy:

I2,4 ≤ ω(h)2 +
(

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn)

)2
;

I2,5 ≤ ω(h)2 +
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.
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Control Convergence (continued)

Use Young’s Inequality and combine all the estimates to get

η

3∥gδ − gδ,h∥2
L2(Ω;Rn) ≲ ω(h)2 +

(
inf

vδ,h∈Xδ,h
[uδ − vδ,h]X(Ωδ ;Rn)

)2
+(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.

Back
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