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Problem statement

Find (T5,85) € Xo X Zad such that

gs€l?,us€Xo

I(U5,85) = min { / F(x, us(x))dx + g/ /\(x)|g(x)|2dx},
Q Q
over pairs (us, g5) € Xo X Zaq that satisfy some state equation

Bs(us, ws) = /gg(x) -ws(x), Yws € Xo.
Q

where ¢ > 0 is the degree of nonlocality. Here g5 is an external force and s
represents the displacement



Outline

O Overview and notation



Motivation and origins

For our problem the nonlocal operator is

1 Du(x,y) y —x
Lsu(x) = E/Q A(x, y)ks(Ix = yl) |x(—y|) |X_y|dy
5

Nonlocal equations [or systems] take the form

Lsu = g, x€
u=0xeQB\Q

Common in solid state mechanics, including peridynamics



Motivation and origins (continued)

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals
over derivatives, attributed to Stewart A. Silling

Features:

o Exchanges derivatives in continuum models for integrals (helps address crack
formation)

o Treats particles as having a bond between them (bond-based model)
o Range of interaction parameterized by ¢, called horizon

o Material parameters represented by a(x) (e.g., density)

o Operator is elliptic (not parabolic or hyperbolic)



Sample candidate integrand

Example:

F(z,u(z)) = [u(@) — uges(2)[?

where Uges is the optimal shape of the material in space to fit a pre-
determined hole as closely as possible

| I Material
(deformable)
Hole (fixed

shape)




Goals

@ Show existence and uniqueness of minimizers (well-posedness)

o Consider variational convergence as § — 0"

o Discretize via FEM (¢ fixed, h — 07)

@ Study simultaneous limit as d, h — 0 (asymptotic compatibility)

o Implementation/numerical results



Properties of kernels

Kernel sequence {ks}s~o radial, integrable, non-negative, supported in B(0, d),
ks(r)r=2 is nonincreasing, and

lim. / ks()de = 4o

Also, for all § > 0:
ks(§)ds = 1

Rn

lim / ks(£)dé =0
t=00 Jrn\ B(0,t) (©)



Notation

o Let Q C R” be a bounded domain, Q5 := QU {x, dist(x,9Q) < ¢}

@ Q5 \ Q is nonlocal boundary

0 D5 = (2 xQs)U(Qs xQ)

o Projected difference: Du(x,y) := Mﬁ%l(xul nonlocal linearized strain
(for vector-valued functions)

o Our material coefficient function is

a(x) +a(y)

where there exist amin, dmax > 0 S0 amin < @ < amax on Q.



Bi-linear forms

Nonlocal bi-linear form:

(u,v) = //D (x,y)ks(x — y) Du(x,y) Dv(xy) dxdy

Ix =yl [x—yl

Local bi-linear form:
Bo(u,v) = C(n)/Qa(x)(2<Sym(vu),Sym(vv))F+div(u)div(v))dx,

Inner products denoted (-, -)y; L2-inner product denoted (-, )



Function spaces and norms

Our function space is based on By :

X(Qs;R") = {ulg€ L2(R") | Bs(u, u) < 0o}
Version with zero nonlocal boundary data:

Xo(Q25;R™) == {ue X(Qs;R") | u=0inQs\Q}

Underlying norm on X(Qs; R"):

Du X,
[ullx(@smny = llullz(@smn+ // ks(x — | ( y|g| dxdy



Cost functional assumptions

l(u.g) = /Q Fx, u(x))ob + 1 /Q Al (x)|2dx

Here Z,4 is a nonempty, closed, convex, and bounded subset of L2(Q; R"), taking
the form

Zy={ze€ (;R") | a<z=b}

Here [a]; < [b]; for all i € {1,2,...,n} with a=([a]s,...,[a],) and
b= ([b]1,...,[b],) being vector fields in L2(Q;R"), n >0, and [ € L>=(Q) is
strictly positive.



Cost functional assumptions (continued)

The integrand F : Q x R” — R possesses the following properties:
@ For all v € R" the mapping x — F(x, v) is measurable;
@ For all x € Q the mapping v — F(x,v) is continuous and convex;
Q There exist ¢; > 0 and £ € L}(Q)
[FOx,v)l < alvP+i(x)

forall x € Q, v € R".



Admissible classes

A% = {(v,f) € Xo(Q5;R") X Zag |
v solves state system with right hand side f for any w € Xo(Qs; R")}

Al = {(v, f) € H}(Q;R")x Zuq | v solves local BVP for any w € H}(Q;R")}



Outline

O Well-posedness



Structural properties

o (X(25:R"), ||llx) and (Xo(2s;R"), [|-||x) are Hilbert

o Can extend u € Xp(Q2s;R") by zero to any open set B D g, including R".
o HY(Qs;R") — X(Q5;R™)

o X(Qs;R") € L2(Qs;R")



Nonlocal Poincaré-Korn Inequality

Proposition (Mengesha-Du 2014)

There exists a 69 > 0 and a constant C(dy) > 0 such that for all 6 € (0, do] and
ue Xo(Qé;Rn),

ks(x — y)|Du(x, y
lulf2o.mm < C(5o)/ / i _| g ) dxdy.
Qs Ix =yl

Notes:
@ The assumption of ks(r)r=2 being non-increasing is needed in the proof

@ The projected difference vanishes under infinitesimal rigid displacements



State equation is well-posed!

Theorem (Existence and Uniqueness for State Equation)

For any g5 € Zaq, there exists a unique us € Xo(25; R") such that the state system
Bs(us, w) = (g5, w)
is satisfied for all w € Xo(Q2s;R"). Furthermore, we have the stability estimate

luslixsrny S ll&slix sz

for some constant independent of §.




Well-posedness of optimal control problem

Theorem (Well-posedness)

There exists (U5, 8) € A° minimizing

Hus.) = [ Flxus()e+ 3 [ AGles(x) o

where (Tg, g5) solves

Bs(us, vs) = / gs(x) - vs(x)dx Vvs € Xp
Q

Furthermore, if F is strictly convex or ) > 0, then the minimizer is unique.




Outline

© Variational convergence as § — 0*



Needed compactness result

Proposition (Mengesha-Du 2014)

Suppose {us}s=o C L2(;R") is a bounded family of vector fields such that
D
sup/ / ks(x | ua(x y2)| dxdy < oo,
6>0 Qs J Qs |

where ks(r)r=2 is nonincreasing; then the fam//y has compact closure in
L2(;R"), and any limit point u belongs to H*(Qs; R")

In fact, we can show u € H}(2; R")!



Local and nonlocal energies

Define for u € L2(Q; R"):

2
Ew) = [ Axpklx )P gy,
D x =l
Eo(u) = C(n)/Qa(X)(2H5ym(VU(X))HF+diV(U(X))2)dX
where C(n) := m, and ||-||r is the Frobenius norm. Take to be +00 when

not well-defined



Minimization of local functional

Suppose {(Us, 85) ts>0 is the family of solutions to the nonlocal control problem.
Then, there is (U, g) such that Us — T in L?(Q;R") and g5 — g in L>(Q; R").
Moreover, (1, g) solves the local optimal control problem.

o Notice {T5}s5>0 have bounded semi-norm so compactness gives
ue H&(Q; R™)
@ Notice {g5}s>0 are bounded in L?(Q;R") so reflexivity gives § € Zyq

Need minimization to be preserved in limit!



-Convergence

We say that the family Es : L[?(Q;R") — R U {+oc} I-converges strongly in
[2(R") to By : [2(R") — RU {+oo} (denoted Es s Ey). That is, the
following hold:

i) The liminf inequality: Assume us — u strongly in L>(Q;R"). Then

Eo(u) < liminfs_,o+ Eg(u(5)

i) Recovery sequence property: For each u € L%(Q;R"), there exists a
sequence {us}s~o where us — u strongly in L2(Q; R") and

limsup;s_,o+ Es(us) < Eo(u)




Convergence of Minimizers for Energies

If {vs}s>o is a sequence of minimizers for { Es}s~o over L>(Q;R"), v is a limit

point of this sequence, and Es LN Ey, then v is a minimizer of Ey on L2(Q; R™).
Finally,

5Ii>n(;+ Eé(u_é) - <g_'57 U_5> = EO(E) - <Ea H>




Tying together optimal control

Final step: Show (7,g) € A" solves local control problem
For any (v, f) € A,
I(u,8) <

(u_%g) < (V5>f) < I(Va f)a

lim / lim /
6—0*t §—07t
where (vs, f) are solutions to the nonlocal state equation.

NOTE: Can improve convergence of controls to strong L? using a projection
formulal!

&(x) = Pz, <—;W(X)>’

2x) = Pz, (~3700).

where ps, p are the optimal adjoints.
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Nonlocal discrete problem statement

Find (T5.1,85.n) € Xs,n X Zp such that

Ush, 855) = i /
(Us.ny 85.) uwexéryr:!ng&hdh (us,h, 85,h),

over pairs (Us p, 85,n) € Xs,n X Zp that satisfy
Bs(us,h, Vo,n) = (&s.hs Vs,h)s  YVs,n € Xshe

Recap:
Huson) = [ FOxus o + D lgsalgae
Q

Henceforth assume I =1



Local discrete problem statement

Find (T, 8n) € X X Z4 such that

I(Ur, &) = i /
(Tn, &n) Lemn (un, &n),

over pairs (up, gn) € Xp X Zp, that satisfy

Bo(un,vh) = (ghsvh), Vi€ Zp.



Notation

o Mesh family: {J,}h>0 (discretizing Qs) shape-regular and quasi-uniform

o Piecewise polynomials of degree m (with respect to our mesh):

Pm(T;R") = Z VaXptoooxsn v €RY ()1 €T
a€eNg : 27:1 a;<m

o Discretized state space: X5 := Xp := {w,, € CO(Qs;R") | wp| 7€
Pl(T;Rn) VT € %, wp, = 0on Qs \Q}

o Discretized control space: Zj, := {zy|7€ Po(T;R") VT € T}

o [y : Zyg — Zp is piecewise constant projection by averages on each triangle



Notation (continued)

Nonlocal discrete control space: (Xs,p, ||-]|x)
Local discrete control space (X, ||| 1)

AY = {(Wan, 5.0) € Xon X Zn |
ws,, solves system with right-hand side f5 , for any vs, € Xs.5}

Alﬁc = {(Wh, fh) S Xh X Zh |
wy, solves local system with right-hand side f, for any v, € X}



Optimality conditions preliminaries

Reduced cost functional:
. n
iies) = [ FlxSigs(0)o -+ 3 sl

Assume now that 1
F(Xv V) = §|V|2.

First-order necessary condition:

03(5)772 - g_'5> Z 0 vP)’z € Zad



Optimality conditions

Nonlocal continuous optimality conditions (including adjoint)
<m + UéTé, Yz — §> Z 07 v’}’z € Zad

m - Sé*FU(7u_5) = SéFu(7U_5)
Us = 5:85-

Projection formula:
_ 1__
500 = Pz (~5700).

NOTE: No second-order optimality conditions needed (strict convexity!)



Optimality conditions (discretized)

Nonlocal discrete optimality conditions (including adjoint)

{

Ps,h +N8o,mYh —8.n) > 0, Vyn€ ZaNZy
Psh = SinFul-Tsn) = SsnFul-,Tsn)

U5 = S55,h85,h-
Projection formula:

1
gi(x) = Pz, (—Enom(x))



Intermediary functions

By Lax-Milgram, we may define us, ps € Xo(Q25; R") such that
Bs(ds,vs) = (8o Vo) Vs € Xo(Q25:R™);
Bs(vs, p5) = (v5,Usn)  Vvs € Xo(Qs:R");
also define dh, pr € HE(Q; R™) such that
Bo(in,v) = (g, v) VveH; (R,

Bo(v,pn) = (v,dn) Vv Hj(QR").



State and adjoint error estimate

Theorem (State and Adjoint Error Estimates)

Suppose that (Ts.pn, 8s.5) is the solution to the nonlocal discrete problem, psp
solves the discrete adjoint equation given Us p; (Us,85) is the solution to the

nonlocal continuous problem; and ps solves the continuous adjoint equation given
us. Then

U5 — Tshllx@smey S inf ||d5 — Vs nllx(0smn)+1185 — 8o .nll2(@irn):
Vs,hE€Xs,h

1Ps — Ponllx@smy S inf 1ps — Vi nllx(esmn)+
Vs,hEXs,h

i 6 = . e
vé’hlgxé’hllua Vs,hll x(0sr) 1185 — o .nll 2




State and adjoint error estimates (continued)

Proof strategy for state error:
@ Test with vs := Ts — 05 in state system and intermediary equation, subtract
@ Use Holder Inequality to get ||[T5 — U5l x(asrn) S 185 — Bo.nll2(@re
o Use Ced’s Lemma on space X p

Note: Adjoint error estimate proven by same strategy



State and adjoint error estimates (local)

Let (T, g) denote the solution to the local continuous problem, while (up,gn) is
the solution to the local discrete problem. Assume also that p denotes the
solution to the continuous adjoint problem, while py solves the discrete adjoint
problem. Then,

1T = Thllhyrry S inf [Gh — vali@rey + I8 — 8hll2(@rr);
vhEXp

IP=Phllm(@rny S inf [Ph—vhlr(@rey+ inf [Uh— vi]rr(@re) + 18 — Bl 2(mn)-
Vs, h€Xn VhEXp




Control convergence

Theorem (Convergence of Controls)

Assume that g5 is the optimal control associated with the nonlocal continuous
problem, and g5 be the discrete optimal control. Then we have the convergence

&8s — gnllizrny S w(h) + inf  [T5 — vs nlx(asrn)
Vs,hEXs,h

inf [ps — RnY.
+ V5,,:exg,h[p5 Vs, bl x(0s:R7)

Proof



Nonlocal problem convergence: summary

Corollary (Full Norm Solution Convergence)

In the setting of our problem formulation,

U5 — Ts nllxsrey S w(h)+ inf |[ds — vs sllxsrn+
vs,hEXs,h

inf [T — Vs.nlx(asr) +  Inf [Ps — Venlx(Qsrn);
vs,hEXs,h ,h1X(Q5iR) vs,hEXs,h hIX(Q5R?)

1Ps—Psnllx(@srry S w(h)+ inf ||ps—Vsnllx(@srn)+ | &5 — Vs nll x(Qs5:rn)
vs,h€Xs.h Vs

inf
hEXsh

+ inf  [Us — vsnlx@srn) T Inf [Ps — Vo nlx(Qsire)-
Vs,hexs,h[ 7] (25:R") VJ,hGXJ,h[ 7] (25:R?)




Local convergence results

Suppose (U, g) denotes the solution to the local continuous problem, while
(Tn, gn) is the solution to the local discrete problem, and p and Py solve the
respective adjoint problems. We have the estimates

[0 = Thllmamey S inf [0 — valioirn) + 18 — Bhll2@rny;
vh€Xh

[P —Pllm@rny < inf [P — vhlmrn + inf [0 — vhl(ire) + 18 — 8hll 2 (@irn)-
VhEXp vhEXp

& — &nllermy S h+ Vhig(h[ﬁ — Vh]H1(irn) + Vhigfq[ﬁ — Va]H1(irn)-




Discrete analogues of convergence

Proposition (I'-convergence of discrete problems)

We have that Es LN Eo in the family of spaces {Xs n}s=o0 in the strong L?(Q; R™)
topology.

Theorem (Discrete Convergence)

Suppose {(Ush,8s.n) }o>0 € Aj is the family of solutions to the nonlocal discrete
problem. Then, there is (Tp, gr) € A such that Ts, — Ty in L>(;R") and
@s.h — Bh in L2(Q;R"). Moreover, (U, gn) solves the local discrete optimal
control problem.




Outline

e Asymptotic compatibility



What is asymptotic compatibility?

o Introduced by X. Tian and Q. Du (2014)
o Originally developed for linear, non-local state equations

Lspusp =T

o Guarantees unconditional convergence of approximations in both
discretization and horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions {us s }s p>0 is
asymptotically compatible in §, h > 0 if for any sequences {3« }72;, {h}224
with &k, he — 0, we have that us, 5, — ug strongly in some Hilbert space norm,
where wug is the solution to a local, continuous problem.

5—0"
Usp ——————— Up

k—o0
h—0" h—0"

§—0"
us i}



What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions {(Ts s, 85.n) }h>0,6>0 to the nonlocal discrete
optimal control problem is asymptotically compatible in §, h > 0 if for any
sequences {0k }2° 1, {he}72; with dx, hx — 0, we have that g5, n, — & strongly in
L2($;R™), and Us, p, — T strongly in L2(Q;R"). Here (U,g) € Ha(Q;R") x Zug
denotes the optimal solution for the local continuous problem.

5—0t

(G5, 85n) —————— (Un, 85)

Hhﬁo\ h—0"
§—0"

(U5, 8 : (0,8)




Asymptotic compatibility: result and notation

Our family of discrete optimal control problems is asymptotically compatible as
d,h — 0T, and limy_; o I(uékyhk7g5k7hk) = /(ﬂ, g).

For convenience denote (Tk, 8k, Pk) = (Us, hys Box.hes Pox.hr)-

Step 0: Pick sub-sequence of {(Tx, 8k, Px)} 22, so there is a limit point
(Us, 8, Px) € HF (S R") X Zog x HE(2;R") with convergence in appropriate
topology (weak convergence of controls)

Define the family of nonlocal energies _#% : X(Qs;R") — R as
) = ] e B ioute ey — (g
I (u) - P u(x, y)|*dxdy — (gk, u
and the local energy _#'°°: HY(Q;R") — R as

S ) = /Qa(X)(2||5ym(VU(X))||2F+diV(U(X))2)dX—<g*7U>



Proof of asymptotic compatibility

Step 1: Show that By(u.,v) = (g.,v) for all p € H}(;R")
Construct a sequence {vk}2, C Xs,.n, SO that vx — v strongly in H}(Q; R").
Then B;s, (Tk,vk) = (8k, k), or equivalently,

@) < 7% ()
Then by -convergence,

jloc(u*) < jloc(v)_

Step 2: Show that By(v, ps) = (u.,v) for all v € H}(Q;R")
Strategy is identical to Step 1!



Proof of asymptotic compatibility (continued)

Step 3: Show that g.(x) = Pz, (—3p.(x))
Recall that gx(x) = Pz, (—3+Mopk(x)), show Mopx — p. strongly in L2(Q;R")
Step 4: Unraveling

@ Steps 1-3 and uniqueness of solutions to optimality system give U = u,,
g=g« and p=p,
@ This is the limit point reached for any sub-sequence of original sequence

o Entire sequence of triples {(Tx, 8k, Px) } 2=, converges to (U,Z,P)

Step 5: Strong convergence of controls
Use the Lipschitz property of the projection and the estimate

gk — gllezrny < 1P — Mopll2(@;rm)+[IMop — Mopkl|2(0;rn)
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Local control problem numerical test

Problem parameters: Tolerance 10712, n =2, n = 0.01, domain

Q= B(0,2)\ B(0,1)

Desired state: (uges)1(x,y) := —ysin(20) cos(37r)(r — 1)(r — 2) and
(Udes)2(x, y) := xsin(20) cos(3mr)(r — 1)(r — 2), where r := \/x? + y? and

6 :=tan"! (%)

h ||U7hHL2(Q;R2) ||Fh“H1(Q;R2) ||ﬁ||L2(Q;]R2) Number of iterations
2=2[ 0.0091437 0.0440521 0.312603 63
273 | 0.0116019 0.0599568 0.388542 91
274 | 0.0124453 0.0650956 0.412412 102
275 | 0.0126701 0.0664565 0.418661 106
276 | 0.0127272 0.0668017 0.420242 107
b Tolome | olras | @) | o teloms

2721 0.00354106 | 0.0235156 0.0407674 0.283827
273 | 0.00400814 | 0.0276332 0.0449658 0.297358
274 | 0.00415522 | 0.0284508 0.0448784 0.296742
27° | 0.00419442 | 0.0286662 0.0448501 0.296559
27° | 0.00420437 | 0.0287208 0.0448428 0.296512




Local control problem simulations

a5
ones
oo

o080

0000
Mac 01558
Rin: 0000

(a) Vector field (b) Pseudocolor plot

Figure: Local elasticity state on annular domain, n = 2, n = .001, 6 global refinements,
tolerance 10712



Local control problem simulations (continued)

141

o

Inmn

03651

Nt 001500

(a) Vector field

(b) Pseudocolor plot

Figure: Local elasticity control on annular domain, n = 2, n = .001, 6 global
refinements, tolerance 10712



Challenges of nonlocal control code

Local contribution of bi-linear form (T, T’ € .7,):

Araonty) = Gu [ [ XEONEZ I Do) )l

|X 7y‘n+2s 2

NOTE: Sample kernel: ks(§) ~ W

Challenges/novelties:
o Domain: Q and Qs \ Q are separately discretized with rectangular meshes,
= [Oa 1]n

Dense stiffness matrix when 6 >> h

Must implement projected differences

Near-field case has singularity that must be transformed via Duffy transforms

Far-field case applies to O(N?) entries of stiffness matrix (away from main
diagonal)

NOTE: One advantage from an efficiency advantage is that supp(ks) C B(0,9),
meaning we can omit calculations for some far-field integrations



Recap and closing

@ Showed existence and uniqueness of minimizers

o Considered behavior as § — 0

@ Discretized via FEMs

o Studied simultaneous limit as §, h — 0" (asymptotic compatibility)

Thank you! Questions?

ArXiV preprint: https://arxiv.org/pdf/2304.09328.pdf
Published in Journal of Applied Math and Optimization


https://arxiv.org/pdf/2304.09328.pdf 

Auxiliary Lemmas

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that

Cc k5(§) C
= = R S

holds for all € € B(0,6), for some s # 3. Then necessarily g5 € X(s; R").

Proof strategy:
@ Mengesha-Du 2016 says that H*(Q5; R") = X(€s;R") here
o Use projection formula g5(x) = —1Pz,(ps(x))
@ This pointwise projection is continuous in H® semi-norm but not X
semi-norm!



Auxiliary Lemmas (continued)

Lemma (Approximation)

If w € L2(Q5;R™), then
[Mow — wll2@rm < w(h),

where My : L?(Qs;R") — Zj, denotes the projection of a function onto the
piecewise constants with respect to the given mesh. If in fact w € X(Qs;R") and
ks satisfies the fractional inequality on B(0,0) for some s # % then

Mow — wll2arny S b llwlix@srn)-

Back



Control Convergence (continued)

Galerkin Approximations:
Gs.n € X5, be the Galerkin approximation to ps, i.e., the solution of

Bs(Vs,h, qs,n) = (Us,Vs,n)  Yvsh € Xspe
Us.n € Xs,p for Us:
Bs(Us,n, vs,n) = (8. Vs,h)  YVsn € Xshe

rs,n € Xg’h solves

Bs(vs,ns rs,n) = (Ushs Vo) Yvsn € Xshe

Back



Control Convergence (continued)

Let h := (Ps — Po.nBo.h — 85) and b := (Ps.n + 18s.n, 085 — &) Using
optimality conditions gives

nlgs — mH%Z(Q;Rn) < h+bh.

= (Ps — 95, 85,n — 85) + (Qs,h — r5,n,85,n — 85) + (rs,n — Po.nsBo.n — B5) =
ha+ha+ hs.

By use of Galerkin approximations, find that /3 <0 and

hi < llgsn— §||L2(Q;R")v5 :2;5 h[ﬁ — Vs, hlx(0s R

ho < llgn— 5IIL2(9;Rn)v5 higfg hlu_a — Vo,h] X(QsR")-



Control Convergence (continued)

By Young's Inequality,

w3

2
h < g g5||mRn)+C( inf [u—a—v(s,h]xms;RH)) ;
Vs,hEXs,h

2
< inf [pJ_V5,h]X(Qa;R")) .

Ve, h€Xs,n



Control Convergence (continued)

Now we write b as

(Ps.n +18.n, M08 — &) = (Ps + 185, Mo — &) + MNM&.n — 8, Mo&s — &)+
(Ps,h — 5, 085 — &5) + (rs,n — Gs,n, M85 — &) + (ds,n — P5, 085 — &) =:
bhi+hsthbhs+hstbhs.



Control Convergence (continued)

Use that Mo (p5 + 785) = 0 to estimate b ;1 as
/2)1 S w(h)
For b5, use Cauchy and stability:

hy < 2

< 3l&n — &liqrn T (h),



Control Convergence (continued)

For k3, use Galerkin approximations and the stabilty:

2

/2’3 < w(h)2+ ( inf [u_(s— Va,h]X(Qé;Rn))
vs,hEXs,h

For I 4 and k5, use Ced's lemma and Cauchy:

2
ha < w(h)2+< inf [U_é_Vé,h]X(Qg;]R")> ;

vs,hEXs,h

2
by < w(h)2+( inf [%—Vé,h]xms:w)> :

Vs,hEXs,h



Control Convergence (continued)

Use Young's Inequality and combine all the estimates to get

2
g”ﬁ — Gl amey S w(h)? + ( inf a5 — Vé,h]X(Qé;Rn)> +

Vs,nE€Xs,h

2
( inf [E—V&h]x(ng;Rn)) .

Vs, h€Xs,n
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