Analysis and Discretization of Optimal Control Problems in Peridynamics

Joshua Siktar jsiktar@vols.utk.edu (joint with Tadele Mengesha and Abner J. Salgado)

AMS Central Sectional Meeting

April 16, 2023

Acknowledgments

- Thanks to my co-advisors Abner J. Salgado and Tadele Mengesha for their continued mentorship
- Thanks to NSF grant 2111228 for financial support
- Thanks to Michael Neilan and Johnny Guzman for organizing the session

Outline

- Problem Formulation
- Notation and Functional Setting
- Well-posedness
- igotimes Convergence of state equation as $\delta o 0^+$
- Discretization
- 6 Asymptotic compatibility

Problem statement

Find $(\overline{u_\delta},\overline{g_\delta})\in X_0\times Z_{\mathsf{ad}}$ such that

$$I(\overline{u_{\delta}},\overline{g_{\delta}}) \; = \; \min_{g_{\delta} \in L^{2}, u_{\delta} \in X_{0}} \Bigg\{ \int_{\Omega} F(x,u_{\delta}(x)) dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x) |g_{\delta}(x)|^{2} dx \Bigg\},$$

subject to the strongly coupled system of equations

$$\mathcal{L}_{\delta}u_{\delta} = g_{\delta}$$

- ullet $\delta \geq 0$ is the degree of non-locality (the **horizon parameter** in peridynamics);
- $\overline{g_{\delta}}$ is a [vector-valued] external force;
- \bullet $\overline{u_\delta}$ represents the [vector-valued] displacement.
- ullet \mathcal{L}_{δ} is a non-local operator, exact formula to be given.

Sample candidate integrand

Suppose we want to deform our material to fit a predetermined hole of shape $u_{
m des}$ as closely as possible. Then our candidate integrand is

$$F(x, u(x)) = |u(x) - u_{des}(x)|^2$$

Material (deformable)

Hole (fixed shape)

Goals

- Show existence and uniqueness of minimizers
- ullet Consider behavior as $\delta o 0^+$
- Discretize via FEMs
- ullet Study simultaneous limit as $\delta,h o 0^+$ (asymptotic compatibility)

Bi-linear form induces non-local state equation:

$$B_{\delta}(u,v) := \iint_{\mathcal{D}_{\delta}} H(x,y) k_{\delta}(x-y) \frac{Du(x,y)}{|x-y|} \frac{Dv(x,y)}{|x-y|} dx dy = \int_{\Omega} g(x) \cdot v(x) dx$$

- *H* is positive, bounded, symmetric
- ullet k_δ a kernel with suitable properties
- Du is projected difference, $Du(x,y) := (u(x) u(y)) \cdot \frac{x-y}{|x-y|}$
- Models arise in peridynamics

State equation

Our function space is based on B_δ :

$$X(\Omega_{\delta}; \mathbb{R}^n) := \{u|_{\Omega} \in L^2(\Omega; \mathbb{R}^n), B_{\delta}(u, u) < \infty\}$$

Version with zero non-local boundary data:

$$X_0(\Omega_\delta; \mathbb{R}^n) := \{ u \in X(\Omega_\delta; \mathbb{R}^n), u = 0 \text{ in } \Omega_\delta \setminus \Omega \}$$

Proposition (Nonlocal Poincaré-Korn (Mengesha-Du 2014))

There exists a $\delta_0 > 0$ and a constant $C(\delta_0) > 0$ such that for all $\delta \in (0, \delta_0]$ and $u \in X_0(\Omega_\delta; \mathbb{R}^n)$,

$$||u||_{L^2(\Omega;\mathbb{R}^n)}^2 \leq C(\delta_0) \int_{\Omega_\delta} \int_{\Omega_\delta} k_\delta(x-y) \frac{|Du(x,y)|^2}{|x-y|^2} dx dy.$$

NOTE: The projected difference vanishes under infinitesimal rigid displacements.

Theorem (Existence and Uniqueness for State Equation)

For any $g_{\delta} \in L^2$, there exists a unique $u_{\delta} \in X_0$ such that the state system

$$B_{\delta}(u_{\delta}, w_{\delta}) = \langle g_{\delta}, w_{\delta} \rangle$$

is satisfied for all $w_{\delta} \in X_0$. Furthermore, we have the stability estimate

$$||u_{\delta}||_{X(\Omega_{\delta};\mathbb{R}^n)} \lesssim ||g_{\delta}||_{L^2(\Omega_{\delta};\mathbb{R}^n)}$$

for some constant independent of δ .

Cost functional assumptions

$$I(u,g) := \int_{\Omega} F(x,u(x))dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x)|g(x)|^2 dx$$

Here Z_{ad} is a box constraint, and $F: \Omega \times \mathbb{R}^n \to \mathbb{R}$ is such that:

- For all $v \in \mathbb{R}^n$ the mapping $x \mapsto F(x, v)$ is measurable;
- **2** For all $x \in \Omega$ the mapping $v \mapsto F(x, v)$ is continuous and convex;
- There exist $c_1 > 0$ and $\ell \in L^1(\Omega)$

$$|F(x,v)| \le c_1|v|^2 + \ell(x)$$

for all $x \in \Omega$, $v \in \mathbb{R}^n$. Moreover, $\lambda \geq 0$, and $\Gamma \in L^{\infty}(\Omega)$ is positive a.e.

Well-posedness of optimal control problem

Theorem (Well-posedness)

For any $\delta > 0$: there exists $(\overline{u_\delta}, \overline{g_\delta}) \in X_0(\Omega_\delta; \mathbb{R}^n) \times Z_{ad}$ minimizing

$$I(u_{\delta},g_{\delta})=\int_{\Omega}F(x,u_{\delta}(x))dx+rac{\lambda}{2}\int_{\Omega}\Gamma(x)|g_{\delta}(x)|^{2}dx,$$

where $\overline{u_\delta} \in X_0$ solves

$$B_{\delta}(u_{\delta}, v_{\delta}) = \int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) dx \quad \forall v_{\delta} \in X_{0}$$

Furthermore, if F is strictly convex or $\lambda > 0$, then the minimizer is unique.

Convergence of state equation as $\delta \to 0^+$

Local bi-linear form (of Navier-Lamé system of linear elasticity)

$$B_0(u,v) := C(n) \int_{\Omega} h(x)(2\langle \operatorname{Sym}(\nabla u), \operatorname{Sym}(\nabla v) \rangle_F + \operatorname{div}(u)\operatorname{div}(v))dx$$

where $C(n) := \frac{1}{(n+2)(n+4)}$.

Theorem

Suppose $\{(\overline{u_\delta},\overline{g_\delta})\}_{\delta>0}$ is the family of solutions to the non-local problem. Then, there is $(\overline{u},\overline{g})$ such that $\overline{u_\delta}\to \overline{u}$ in $L^2(\Omega;\mathbb{R}^n)$ and $\overline{g_\delta} \rightharpoonup \overline{g}$ in $L^2(\Omega;\mathbb{R}^n)$. Moreover, $(\overline{u},\overline{g})$ solves the local optimal control problem.

Local state equation that $(\overline{u}, \overline{g})$ satisfies the constraint:

$$B_0(u,v) = \int_{\Omega} g(x) \cdot v(x) dx$$

Discrete Formulation

- Use continuous piecewise linears for states
- Use piecewise constants for controls
- Discrete optimal control problem is well-posed

Optimality conditions

Let S_{δ} denote solution operator for state equation Non-local continuous optimality conditions (including adjoint):

$$\begin{array}{rcl} \overline{u_{\delta}} &=& S_{\delta}\overline{g_{\delta}} \\ \overline{p_{\delta}} &=& S_{\delta}^{*}F_{u}(\cdot,\overline{u_{\delta}}) &=& S_{\delta}F_{u}(\cdot,\overline{u_{\delta}}) \\ \langle \overline{p_{\delta}} + \lambda\overline{g_{\delta}}, \gamma_{z} - \overline{g_{\delta}} \rangle_{L^{2}} &\geq& 0, \quad \forall \gamma_{z} \in Z_{\mathsf{ad}}. \end{array}$$

Projection formulas:

$$\overline{g_{\delta}}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\overline{p_{\delta}}(x))$$

$$\overline{g_{\delta,h}}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\Pi_0 \overline{p_{\delta,h}}(x))$$

Here Π_0 is defined as $\Pi_0 z := \int_T z$ on each triangle T in our mesh

Non-local problem convergence: summary

Theorem (Convergence)

In the setting of our problems,

$$\begin{split} \|\overline{u_{\delta}} - \overline{u_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \lesssim & \omega(h) + \inf_{\substack{v_{\delta,h} \in X_{\delta,h} \\ v_{\delta,h} \in X_{\delta,h}}} \|\widehat{u_{\delta}} - v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{\substack{v_{\delta,h} \in X_{\delta,h} \\ v_{\delta,h} \in X_{\delta,h}}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{\substack{v_{\delta,h} \in X_{\delta,h} \\ v_{\delta,h} \in X_{\delta,h}}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}; \end{split}$$

$$\|\overline{g_{\delta}} - \overline{g_{\delta,h}}\|_{L^2(\Omega;\mathbb{R}^n)}^2 \lesssim \ \omega(h)^2 + \left(\inf_{\mathsf{v}_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}} - \mathsf{v}_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^n)}\right)^2 +$$

$$\left(\inf_{\mathsf{v}_{\delta,h}\in\mathsf{X}_{\delta,h}}[\overline{p_\delta}-\mathsf{v}_{\delta,h}]_{\mathsf{X}(\Omega_\delta;\mathbb{R}^n)}\right)^2.$$

$$\begin{split} \|\overline{p_{\delta}} - \overline{p_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \lesssim & \ \omega(h) + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{p_{h}} - v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{u_{\delta}} - v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \\ & + \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}. \end{split}$$

Non-local problem convergence: comments

- Here $\omega(h)$ represents the approximation properties of the projection Π_0
- $X_{\delta,h}$ is our discrete non-local space
- If our kernel is of fractional type, i.e. $k_{\delta}(\xi) \sim \frac{1}{|\xi|^{n+2s}}$, then $\omega(h) \sim h^s$

Discrete analogue of convergence

Theorem (Discrete Convergence)

Suppose $\{(\overline{u_{\delta,h}},\overline{g_{\delta,h}})\}_{\delta>0}$ is the family of solutions to the non-local discrete problem. Then, there is $(\overline{u_h},\overline{g_h})$ such that $\overline{u_{\delta,h}} \to \overline{u_h}$ in $L^2(\Omega;\mathbb{R}^n)$ and $\overline{g_{\delta,h}} \to \overline{g_\delta}$ in $L^2(\Omega;\mathbb{R}^n)$. Moreover, $(\overline{u_h},\overline{g_h})$ solves the local discrete optimal control problem.

What is asymptotic compatibility?

- Introduced by X. Tian and Q. Du (2014)
- Originally developed for approximating solutions to linear, non-local problems of form $\mathcal{L}_{\delta}u=f$ for a non-local operator \mathcal{L}_{δ}
- Gives unconditional convergence of approximations in both discretization and horizon parameters

Definition (Asymptotic Compatibility)

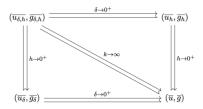
Given fixed data f in a Hilbert Space, the family of solutions $\{u_{\delta,h}\}_{\delta,h>0}$ is **asymptotically compatible** in $\delta,h>0$ if for any sequences $\{\delta_k\}_{k=1}^\infty,\{h_k\}_{k=1}^\infty$ with $\delta_k,h_k\to 0$, we have that $u_{\delta_k,h_k}\to u_0$ strongly in some Hilbert space norm, where u_0 is the solution to a local, continuous problem.

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions $\{(\overline{u_{\delta,h}},\overline{g_{\delta,h}})\}_{h>0,\delta>0}$ to the nonlocal discrete optimal control problem is **asymptotically compatible** in $\delta,h>0$ if for any sequences $\{\delta_k\}_{k=1}^{\infty},\{h_k\}_{k=1}^{\infty}$ with $\delta_k,h_k\to 0$, we have that $\overline{g_{\delta_k,h_k}}\to \overline{g}$ weakly in $L^2(\Omega;\mathbb{R}^n)$, and $\overline{u_{\delta_k,h_k}}\to \overline{u}$ strongly in $L^2(\Omega;\mathbb{R}^n)$. Here $(\overline{u},\overline{g})\in H^1_0(\Omega;\mathbb{R}^n)\times Z_{\mathrm{ad}}$ denotes the optimal solution for the local continuous problem.

NOTE: In particular, $H_0^1(\Omega; \mathbb{R}^n)$ is the limiting space of $X_0(\Omega_{\delta}; \mathbb{R}^n)$ as $\delta \to 0^+$



Asymptotic compatibility: result and notation

Theorem

Our family of optimal control problems is asymptotically compatible as $\delta, h o 0^+.$

Define $A_{\delta}: X_0(\Omega_{\delta}; \mathbb{R}^n) \to (X_0(\Omega_{\delta}; \mathbb{R}^n))^*$ as the invertible operator such that

$$\langle A_{\delta}u, v \rangle_{X_0^*, X_0} = B_{\delta}(u, v) \quad \forall u, v \in X_0(\Omega_{\delta}; \mathbb{R}^n);$$

define $A_0: H^1_0(\Omega; \mathbb{R}^n) \to H^{-1}(\Omega; \mathbb{R}^n)$ as the invertible operator such that

$$\langle A_0 u, v \rangle_{H^{-1}, H_0^1} = B_0(u, v) \quad \forall u, v \in H_0^1(\Omega; \mathbb{R}^n).$$

Proof of asymptotic compatibility

Needed preliminaries:

- **Q** Given a $v \in H^1_0(\Omega; \mathbb{R}^n)$, and $h_k, \delta_k \to 0$, we can find a sequence $v_k \in X_{\delta_k, h_k}$ such that $v_k \to v$ strongly in $H^1(\Omega; \mathbb{R}^n)$ as $k \to \infty$.
- ② For any sequences $\{\delta_k\}_{k=1}^{\infty}, \{h_k\}_{k=1}^{\infty}$ with $\delta_k, h_k \to 0$, there exists a C > 0 so that $\|\overline{u_{\delta_k,h_k}}\|_{X(\Omega_{\delta_k};\mathbb{R}^n)} \leq C$ uniformly in $k \in \mathbb{N}^+$.
- We have that $A_{\delta}u \in L^2(\Omega; \mathbb{R}^n)$ and $\lim_{\delta \to 0^+} ||A_{\delta}u A_0u||_{L^2(\Omega; \mathbb{R}^n)} = 0$ for each $u \in C_0^{\infty}(\Omega; \mathbb{R}^n)$.

Pick sub-sequence of $\{(\overline{u_k},\overline{g_k},\overline{p_k})\}_{k=1}^{\infty}$ so there is a limit point $(u_*,g_*,p_*)\in H^1_0(\Omega;\mathbb{R}^n)\times Z_{\mathrm{ad}}\times H^1_0(\Omega;\mathbb{R}^n)$ with convergence in appropriate topology

Proof of asymptotic compatibility (continued)

Step 1: Show that $B_0(u_*, \varphi) = \langle g_*, \varphi \rangle$ for all $\varphi \in H_0^1(\Omega; \mathbb{R}^n)$ Pick $\varphi \in C_0^{\infty}(\Omega; \mathbb{R}^n)$, let $w_k := I_k \varphi$ (nodal interpolation), $w_k \to \varphi$ in $W^{1,\infty}(\Omega; \mathbb{R}^n)$, then compute limit as $k \to \infty$ of

$$B_{\delta_k}(\overline{u_k}, w_k) = \langle A_{\delta_k} \varphi, \overline{u_k} \rangle_{X_0^*, X_0} + \langle A_{\delta_k} (w_k - \varphi), \overline{u_k} \rangle_{X_0^*, X_0} =: I_k + II_k.$$

Step 2: Show that $B_0(\varphi, p_*) = \langle u_*, \varphi \rangle$ for all $\varphi \in H_0^1(\Omega; \mathbb{R}^n)$ Strategy is identical to Step 1!

Step 3: Show that
$$g_*(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(p_*(x))$$

Recall that $\overline{g_k}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\Pi_0 \overline{p_k}(x))$, show $\Pi_0 \overline{p_k} \to p_*$ strongly in $L^2(\Omega; \mathbb{R}^n)$

Proof of asymptotic compatibility (continued)

Step 4: Unraveling

- Steps 1-3 and uniqueness of solution to optimality system give $\overline{u}=u_*$, $\overline{g}=g_*$, and $\overline{p}=p_*$
- This is the limit point reached for any sub-sequence of original sequence
- Entire sequence of triples $\{(\overline{u_k}, \overline{g_k}, \overline{p_k})\}_{k=1}^{\infty}$ converges to $(\overline{u}, \overline{g}, \overline{p})$

Recap and closing

- Showed existence and uniqueness of minimizers
- ullet Considered behavior as $\delta
 ightarrow 0^+$
- Discretized via FEMs
- ullet Studied simultaneous limit as $\delta, h o 0^+$

Thank you! Questions?

Auxiliary lemmas

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that

$$\frac{c}{|\xi|^{n+2s}} \leq \frac{k_{\delta}(\xi)}{|\xi|^2} \leq \frac{C}{|\xi|^{n+2s}}$$

holds for all $\xi \in B(0, \delta)$, for some $s \neq \frac{1}{2}$. Then necessarily $\overline{g_\delta} \in X(\Omega_\delta; \mathbb{R}^n)$.

Recall Fractional Sobolev Space (special case of our kernels):

$$H^s(\Omega_\delta;\mathbb{R}^n) := \left\{ u|_{\Omega} \in L^2(\Omega;\mathbb{R}^n), \frac{|u(x) - u(y)|}{|x - y|^{\frac{n}{2} + s}} \in L^2(\Omega_\delta \times \Omega_\delta) \right\}$$

Proof strategy:

- Mengesha-Du 2016 says that $H^s(\Omega_\delta; \mathbb{R}^n) = X(\Omega_\delta; \mathbb{R}^n)$ here
- Use projection formula $\overline{g_\delta}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\overline{p_\delta}(x))$
- This pointwise projection is continuous in H^s semi-norm but not X semi-norm!

Auxiliary lemmas (continued)

Lemma (Approximation)

If $w \in L^2(\Omega_\delta; \mathbb{R}^n)$, then

$$\|\Pi_0 w - w\|_{L^2(\Omega;\mathbb{R}^n)} \le \omega(h),$$

where $\Pi_0: L^2(\Omega_\delta; \mathbb{R}^n) \to Z_h$ denotes the projection of a function onto the piecewise constants with respect to the given mesh. If in fact $w \in X(\Omega_\delta; \mathbb{R}^n)$ and k_δ satisfies the fractional inequality on $B(0, \delta)$ for some $s \neq \frac{1}{2}$, then

$$\|\Pi_0 w - w\|_{L^2(\Omega;\mathbb{R}^n)} \lesssim h^s \|w\|_{X(\Omega_\delta;\mathbb{R}^n)}.$$

Back

Galerkin Approximations:

 $q_{\delta,h} \in X_{\delta,h}$ be the Galerkin approximation to $\overline{p_\delta}$, i.e., the solution of

$$B_{\delta}(v_{\delta,h},q_{\delta,h}) = \langle \overline{u_{\delta}},v_{\delta,h} \rangle \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

 $U_{\delta,h} \in X_{\delta,h}$ for $\overline{u_\delta}$:

$$B_{\delta}(U_{\delta,h},v_{\delta,h}) = \langle \overline{g_{\delta}},v_{\delta,h} \rangle \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

 $r_{\delta,h} \in X_{\delta,h}$ solves

$$B_{\delta}(v_{\delta,h},r_{\delta,h}) = \langle U_{\delta,h},v_{\delta,h} \rangle \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

Back

Let $I_1 := \langle \overline{p_{\delta}} - \overline{p_{\delta,h}}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle$ and $I_2 := \langle \overline{p_{\delta,h}} + \lambda \overline{g_{\delta,h}}, \Pi_0 \overline{g_{\delta}} - \overline{g_{\delta}} \rangle$. Using optimality conditions gives

$$\lambda \| \overline{g_{\delta}} - \overline{g_{\delta,h}} \|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2} \leq I_{1} + I_{2}.$$

$$I_{1} = \langle \overline{p_{\delta}} - q_{\delta,h}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle + \langle q_{\delta,h} - r_{\delta,h}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle + \langle r_{\delta,h} - \overline{p_{\delta,h}}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle =: I_{1,1} + I_{1,2} + I_{1,3}.$$

By use of Galerkin approximations, find that $I_{1,3} \leq 0$ and

$$I_{1,1} \lesssim \|\overline{g_{\delta,h}} - \overline{g_{\delta}}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})};$$

$$I_{1,2} \lesssim \|\overline{g_{\delta,h}} - \overline{g_{\delta}}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \inf_{\nu_{\delta}} \inf_{h \in X_{\delta}} [\overline{u_{\delta}} - \nu_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}.$$

By Young's Inequality,

$$I_{1} \leq \frac{\lambda}{3} \|\overline{g_{\delta,h}} - \overline{g_{\delta}}\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2} + C \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} \right)^{2} + C \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} \right)^{2}.$$

Now we write I_2 as

$$\langle \overline{p_{\delta,h}} + \lambda \overline{g_{\delta,h}}, \Pi_0 \overline{g_{\delta}} - \overline{g_{\delta}} \rangle = \langle \overline{p_{\delta}} + \lambda \overline{g_{\delta}}, \Pi_0 \overline{g_{\delta}} - \overline{g_{\delta}} \rangle + \lambda \langle \overline{g_{\delta,h}} - \overline{g_{\delta}}, \Pi_0 \overline{g_{\delta}} - \overline{g_{\delta}} \rangle + \langle \overline{p_{\delta,h}} - r_{\delta,h}, \Pi_0 \overline{g_{\delta}} - \overline{g_{\delta}} \rangle + \langle r_{\delta,h} - q_{\delta,h}, \Pi_0 \overline{g_{\delta}} - \overline{g_{\delta}} \rangle + \langle q_{\delta,h} - \overline{p_{\delta}}, \Pi_0 \overline{g_{\delta}} - \overline{g_{\delta}} \rangle =:$$

$$I_{2,1} + I_{2,2} + I_{2,3} + I_{2,4} + I_{2,5}.$$

Use that $\Pi_0(\overline{p_\delta} + \lambda \overline{g_\delta}) = 0$ to estimate $I_{2,1}$ as

$$I_{2,1} \leq \omega(h).$$

For $I_{2,2}$, use Cauchy and stability:

$$I_{2,2} \leq \frac{\lambda}{3} \|\overline{g_{\delta,h}} - \overline{g_{\delta}}\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2} + \omega(h),$$

For $I_{2,3}$, use Galerkin approximations and the stabilty:

$$I_{2,3} \leq \omega(h)^2 + \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^n)}\right)^2$$

For $I_{2,4}$ and $I_{2,5}$, use Ceá's lemma and Cauchy:

$$I_{2,4} \leq \omega(h)^2 + \left(\inf_{\nu_{\delta,h} \in X_{\delta,h}} [\overline{u_\delta} - \nu_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}\right)^2;$$

$$I_{2,5} \leq \omega(h)^2 + \left(\inf_{\substack{v_{\delta,h} \in X_{\delta,h} \\ v_{\delta,h} \in X_{\delta,h}}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^n)}\right)^2.$$

Use Young's Inequality and combine all the estimates to get

$$\frac{\lambda}{3} \|\overline{g_{\delta}} - \overline{g_{\delta,h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2} \lesssim \omega(h)^{2} + \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}\right)^{2} + \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}\right)^{2}.$$

Back