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Story of the Paper

Discretization of nonlocal models (PD/ND)

Consider models both with fixed parameter and in the limit
Design a framework with analytic properties
Construct suitable finite element spaces for Galerkin
approximations
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Outline of Talk
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Analysis of Nonlocal Model
Applications to ND/PD Framework
Numerics
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Setup

{(Tσ, || · ||σ)}σ≥0 decreasing family of Hilbert spaces

Inner products (·, ·)Tσ
T−σ := T ∗σ
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Assumptions

Definition
Uniform Embedding: There exist M1,M2 > 0 such that

M1||u||T0 ≤ ||u||Tσ , ∀u ∈ Tσ

||u||Tσ ≤ M2||u||T∞ , ∀u ∈ T∞

Definition
Asymptotic Compact Embedding: For {un}n>0 with C > 0
s.t. ||un||Tn ≤ C, {un}n>0 is relatively compact in T0.
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Assumptions (continued)

For σ ∈ [0,∞], aσ : Tσ × Tσ → R a symmetric bilinear form:

Definition
Coercive: there exists C1 > 0 s.t.

aσ(u,u) ≥ C1||u||2Tσ , ∀u ∈ Tσ

Definition
Bounded: there exists C2 > 0 s.t.

aσ(u, v) ≤ C2||u||Tσ ||v ||Tσ , ∀u, v ∈ Tσ
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Assumptions (continued)

Induce Aσ : Tσ → T−σ so 〈Aσu, v〉 = aσ(u, v), and choose T∗ a
subspace of T∞:

T∗ is dense in T∞ and in Tσ when Aσu ∈ T0 for all u ∈ T∗

limσ→∞ ||Aσu −A∞u||T−σ = 0 for all u ∈ T∗
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Subspace Parameterization

Let {Wσ,h}h>0 ⊂ Tσ be closed subspaces.
Reminiscent of Galerkin approximations, h meshing
parameter

Considering σ →∞ with h fixed
Considering σ →∞,h→ 0+ simultaneously
Nonlocal vector-valued problems: σ is a horizon parameter
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Assumptions (continued)

Let h ∈ (0,h0]. Then we assume:

For any σ ∈ [0,∞], v ∈ Tσ, there exists sequence
vn ∈ {Wσ,hn}∞n=1 with hn → 0 and ||v − vn||Tσ → 0 as
n→∞

(Asymptotic Density) For any v ∈ T∞, there exists
sequence vn ∈ {Wσ,hn}∞n=1 with hn → 0 and
||v − vn||T∞ → 0 as n→∞
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Parameterized Variational Problems

Standard Problem: Given f ∈ T0, find uσ ∈ Tσ such that

aσ(uσ, v) = (f , v)T0 , ∀v ∈ Tσ
Subspace Problem: Find uσ,h ∈Wσ,h such that

aσ(uσ,h, v) = (f , v)T0 , ∀v ∈Wσ,h

26



Intro FAF ND PD Numerics Ref Acknowledgments

Convergence Theorems

Theorem
As σ →∞,

||uσ − u∞||T0 → 0.

Theorem
Fix σ ∈ [0,∞]. Then there exists C > 0 (independent of h) so
that

||uσ,h − uσ||Tσ ≤ C inf
vσ,h∈Wσ,h

||vσ,h − uσ||Tσ → 0

as h→ 0+.

Remark: This proof follows from coercivity and boundedness.
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Convergence of Approximate Solutions

Assume the following additional assumptions hold:

W∞,h = T∞ ∩

⋂
σ≥0

Wσ,h


lim
σ→∞

aσ(uh, vh) = a∞(uh, vh), ∀uh, vh ∈W∞,h

(Strong Continuity) If {||wσ,h||Tσ}σ>0 is uniformly bounded and
wσ,h → 0 in T0 as σ →∞, then

lim
σ→∞

aσ(wσ,h, vh) = 0, ∀vh ∈W∞,h
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Convergence of Approximate Solutions

Theorem
Suppose h > 0, previous assumptions hold. Then

||uσ,h − u∞,h||T0 → 0

as σ →∞.

Method of proof:

Asymptotic compact embedding yields subsequence of
{uσn,h}∞n=1 convergent to u∗,h in T0

Show decay of aσ(uσ,h − u∗,h, vh) and
aσ(u∗,h, vh)− a∞(u∗,h, vh)
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Asymptotically Compatible Schemes

Definition
A family of convergent approximations {uσ,h}σ>0,h>0 is
asymptotically compatible to u∞ if whenever
σn →∞,hn → 0+, we obtain

||uσn,hn − u∞||T0 → 0

Theorem
Under the aforementioned assumptions, {uσ,h}σ>0,h>0 is an
asymptotically compatible family.
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Nonlocal Model Setup

Interaction domain:

ΩI = {y ∈ Rd \ Ω,dist(y , ∂Ω) ≤ 1}

Nonlocal operator:

Lu(x) = −2
∫

Ω
(u(y)− u(x))γ(x , y)dy

The kernel γ(·, ·) is nonnegative, radial, and symmetric, with

γ̂(|ξ|) = |ξ|2γ(|ξ|) ∈ L1
loc(Rd )
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Nonlocal Model Setup (cont’d)

Define rescaled kernels, δ ∈ (0,1]:

γ̂δ(|ξ|) :=
1
δd γ̂

(
|ξ|
δ

)
γδ(|ξ|) :=

1
δd+2γ

(
|ξ|
δ

)
Nonlocal Volume Constrained Problem:{

L0u = f , on Ω

u = 0, on ∂Ω
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Nonlocal Model Setup (cont’d)

Energy space (δ ∈ (0,1]) define Sδ:

{u ∈ L2(Ωδ) :

∫
Ω

∫
Bδ(x)

γδ(|x−y |)(u(x)−u(y))2dxdy <∞,u|ΩIδ = 0}

Inner product:

(u, v)Sδ :=

∫
Ω

∫
Bδ(x)

γδ(|x − y |)(u(x)− u(y))(v(x)− v(y))dxdy

Define S0 := H1
0 (Ω), with inner product/norm:

(u, v)S0 :=

∫
Ω
5u(x) · 5v(x)dx

||u||2S0
:=

∫
Ω
| 5 u(x)|2dx
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Nonlocal Model Setup (cont’d)

Bilinear form:

bδ(u, v) =

{∫
Ω

∫
Bδ(x)

γδ(|y − x |)(u(y)− u(x))(v(y)− v(x))dydx , δ > 0∫
Ω
5u(x) · 5v(x)dx , δ = 0

Weak formulation: find uδ ∈ Sδ such that for all v ∈ Sδ:

bδ(uδ, v) = (f , v)L2
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Finite Element Spaces

Let δ ∈ (0,1), fix a triangulation τh of Ωδ; define

Vδ,h := {v ∈ Sδ, v |K ∈ P(K ) ∀K ∈ τh}

Assumptions:

Every function in Vδ,h vanishes outside Ω

For any v ∈ Sδ, there is a sequence vh ∈ Vδ,h where
||vh − v ||Sδ → 0
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Setup of Asymptotic Framework

Galerkin Approximation:
Find uδ,h ∈ Vδ,h so bδ(uδ,h, v) = (f , v)L2(Ωδ) ∀v ∈ Vδ,h

Family of subspaces for ND model:

Tσ :=


S1/σ, σ ∈ [1,∞]

S1, σ ∈ (0,1)

L2
0(Ω), σ = 0
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Asymptotic Results

Lemma
For any α ∈ (0,2], and a kernel γδ satisfying
|ξ|αγδ(|ξ|) ∈ L1(Rd ), there exists C = C(Ω) such that

||u||2Sδ ≤ C
(∫

Rd
|ξ|αγδ(|ξ|)dξ

)
for all u ∈ Hα/2

0 (Ω) ∩ L2
0(Ω).

Lemma (Uniform Poincaré)
There exists C > 0 so for all δ ∈ (0,1],

||u||2L2(Ωδ) ≤ C||u||2Sδ
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Asymptotic Results (continued)

Lemma
For any v ∈ C∞C (Ω) and x ∈ Ω, there is a pointwise limit

Lδv(x)→ −4 v(x)

and there exists a C = C(d , v) such that

sup
0<δ<1

sup
x∈Ω
|Lδ(x)| ≤ C

Lemma
For any v ∈ C∞C (Ω), as δ → 0+,

||Lδv − (−4 v)||L2(Ω) → 0
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Asymptotic Results (continued)

Definition

V̂δ,h denotes continuous piecewise linear FES with mesh τh
(same as Vδ,h)

Lemma (Asymptotic Density)

The family {V̂δ,h}h>0,δ>0 is asymptotically dense in S0.

This subspace of H1
0 chosen to approximate S0 as h→ 0+
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Asymptotic Results (continued)

Theorem (Asymptotic Convergence)

If V̂δ,h ⊂ Vδ,h then as δ → 0 and h→ 0,

||uδ,h − u0||L2(Ω) → 0

Use asymptotic framework with verified assumptions:

Tσ replaced by S1/σ

aσ replaced by b1/σ

Aσ replaced by L1/σ

Wσ,h replaced by V1/σ,h

δ ↔ 1/σ
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Finite Element Subspace

Let τh be a triangulation, define

Vh := {v ∈ C(Ωδ), v |K ∈ C∞(K ), K ∈ τh, v |ΩIδ = 0}

Lemma (Convergence in Subspace)
Let u, v ∈ Vh, then as δ → 0,

(Lδu, v)L2(Ωδ) − (5u,5v)L2(Ωδ) → 0

For any uh, vh ∈ V0,h,

lim
δ→0

bδ(uh, vh) = b0(uh, vh)
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Asymptotic Results (continued)

Lemma (Inverse Inequality)
If Vδ,h = V0,h ⊂ S0, there exists C > 0 independent of δ such
that for all uh ∈ Vδ,h,

||uh||Sδ ≤ C||uh||L2(Ω)

Theorem
Let uδ,h and u0,h be discrete solutions to the variational
problems. If Vδ,h = V0,h ⊂ S0, then

||uδ,h − u0,h||S0 → 0

as h→ 0.
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Asymptotic Results (continued)

Theorem
Assume Vδ,h ⊂ Sδ is a finite element space containing all
continuous piecewise linear functions, and that
V0,h = S0 ∩

(⋂
δ>0 Vδ,h

)
. Then

||uδ,h − u0,h||L2(Ω) → 0

as δ → 0+.
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Asymptotic Results (continued)

Method of proof:

Let u∗,h be such that ||uδ,h − u∗,h||L2(Ω) → 0

Sufficient to show b0(u∗,h, vh) = (f , vh) by uniqueness
Write (f , vh)− b0(u∗,h, vh) =
bδ(uδ,h − u∗,h, vh) + [bδ(u∗,h, vh)− b0(u∗,h, vh)]

Show each term decays to 0
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Asymptotic Results (continued)

Let K ⊂ τh, define

ΓK := {x /∈ K ,dist(x ,K ) ≤ δ}

and write bδ(wδ,h, vh) as

∑
K∈τh

∫
K

∫
K∪ΓK

γδ(x ′− x)(wδ,h(x ′)−wδ,h(x))(vh(x ′)− vh(x))dx ′dx

Integrate over K × K and K × ΓK and estimate from above by
Cauchy-Schwarz.
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Highlights of PD Model

Bilinear form depends on bulk and shear modulus, same
kernel as ND model
Energy space: u ∈ S∗ such that u = 0 on ΩIδ and
{
∫

Ω

∫
Bδ(x) γδ(|x

′ − x |)(Tr(D∗u)(x ′, x))2dx ′dx <∞}
Utilize family of finite element subspaces parameterized by
mesh size
Asymptotic compatibility conserved for conforming finite
element approximations
Need continuous piecewise linear functions in the
subspaces
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Goals of Numerics

Verify convergence results from analytic framework

Show how convergence rates depend on decay of δ and h
Relationship of δ and h shown: δ = h
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Sample Nonlocal Problem Formulation

Define

Lδu = 2
∫ δ

−δ
γδ(s)(u(x + s)− u(x))ds

and consider {
−Lδu = f , x ∈ (0,1)

u = 0, x /∈ (0,1)
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Spline Function

Define fourth order B-spline:

u0(x) =


0, x < 0
x4

120 , 0 ≤ x < 0.2
− x4

30 + x3

30 −
x2

100 + x
750 −

1
15000 , 0.2 ≤ x < 0.4

x4

20 −
x3

10 + 7x2

100 −
x
50 + 31

15000 , 0.4 ≤ x < 0.5

extended symmetrically to [0.5,1]. Notice u′′0 is continuous.
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Collected Data
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Collected Data (comments)

As k gets bigger, mesh is more refined (h = 2−k )

u′′0 is continuous but the error approximations have
discontinuities
Discretization errors more apparent for smaller h
Modeling error less noticeable for smaller h (and δ)

57



Intro FAF ND PD Numerics Ref Acknowledgments

Collected Data (comments)

As k gets bigger, mesh is more refined (h = 2−k )
u′′0 is continuous but the error approximations have
discontinuities

Discretization errors more apparent for smaller h
Modeling error less noticeable for smaller h (and δ)

58



Intro FAF ND PD Numerics Ref Acknowledgments

Collected Data (comments)

As k gets bigger, mesh is more refined (h = 2−k )
u′′0 is continuous but the error approximations have
discontinuities
Discretization errors more apparent for smaller h

Modeling error less noticeable for smaller h (and δ)

59



Intro FAF ND PD Numerics Ref Acknowledgments

Collected Data (comments)

As k gets bigger, mesh is more refined (h = 2−k )
u′′0 is continuous but the error approximations have
discontinuities
Discretization errors more apparent for smaller h
Modeling error less noticeable for smaller h (and δ)

60



Intro FAF ND PD Numerics Ref Acknowledgments

Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, A nonlocal
vector calculus, nonlocal volume-constrained problems,
and nonlocal balance laws, Math. Models Methods Appl.
Sci., 23 (2013), pp. 493-540.
X. Tian, Q. Du (2014). Asymptotically Compatible
Schemes and Applications to Robust Discretization of
Nonlocal Models. SIAM J. Numer. Anal. 52(4), 1641-1665.

61



Intro FAF ND PD Numerics Ref Acknowledgments

Abner Salgado and the CAM organization committee
Tadele Mengesha
Xiaochuan Tian and Qiang Du

62



Intro FAF ND PD Numerics Ref Acknowledgments

Q& A

Q: What other relationships are considered besides δ = h?
A: δ = h2 or δ =

√
h (with some flexibility)

Q: Why wait so long to introduce
limσ→∞ aσ(uh, vh) = a∞(uh, vh)?
A: Only pertinent on subspaces when σ is not taken as fixed.
Q: Why assume limσ→∞ ||Aσu −A∞u||T−σ = 0 in T∗?
A: Needed for convergence of solutions to variational problems
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