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Story of the Paper

@ Discretization of nonlocal models (PD/ND)
@ Consider models both with fixed parameter and in the limit
@ Design a framework with analytic properties

@ Construct suitable finite element spaces for Galerkin
approximations
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Assumptions

Uniform Embedding: There exist M;, Mo > 0 such that

Milullr < llull7,, Vu e Ts

l|ull7, < Me|lull7.,, YU € Too

Asymptotic Compact Embedding: For {un},~o with C > 0
s.t. ||un||7, < C, {un}n>o is relatively compact in 7p.
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Assumptions (continued)

Foro € [0,], a, : T5 X T, — R a symmetric bilinear form:

Coercive: there exists C; > 0 s.t.

a,(u,u) > Cy||ull5., Yu e T,

Bounded: there exists Co> > 0 s.t.

a,(u,v) < Go||ullT. [Vl Yu,v €T,
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Assumptions (continued)

Induce A, : 7, — T so (A,u, V) = a,(u, v), and choose T, a
subspace of 7:

@ 7.isdensein T, andin 7, when A,uc Toforallu e T,
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Assumptions (continued)

Induce A, : 7, — T so (A,u, V) = a,(u, v), and choose T, a
subspace of 7:

@ 7.isdensein T, andin 7, when A,uc Toforallu e T,
@ limy_o0 ||AsU — AscU||7, =0forallu e T,
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Subspace Parameterization

Let {W, n}n>0 C T be closed subspaces.

@ Reminiscent of Galerkin approximations, h meshing
parameter

@ Considering o — oo with h fixed
@ Considering 0 — oo, h — 0" simultaneously
@ Nonlocal vector-valued problems: ¢ is a horizon parameter
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Assumptions (continued)

Let h € (0, hy]. Then we assume:

@ Forany o € [0, ], v € 75, there exists sequence
Vh € {W, p,}72 4 with hy — 0and ||v — v,||7, — 0 as
n— oo
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Assumptions (continued)

Let h € (0, hy]. Then we assume:

@ Forany o € [0, ], v € 75, there exists sequence
Vh € {W, p,}72 4 with hy — 0and ||v — v,||7, — 0 as
n— oo

@ (Asymptotic Density) For any v € 7., there exists
sequence Vp € {W, p,}7° ; with h, — 0 and
[|lV—Vpll7,, > 0asn— oo
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Parameterized Variational Problems

Standard Problem: Given f € Ty, find u, € 7, such that

as(Us,v) = (f, V)7, Vv €T,

Subspace Problem: Find u, , € W, 5 such that

as(Uyp, V) = (f, V)75, Vv € W,
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Convergence Theorems

AS o — oo,

l|Us — UOOH% — 0.

Theorem

Fix o € [0, 00]. Then there exists C > 0 (independent of h) so
that

|Uoh — UsllT, < C inf  ||Von — Usll7, = O
7heWo',h

o

ash— 0" .

Remark: This proof follows from coercivity and boundedness.

Py TS
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Convergence of Approximate Solutions

Assume the following additional assumptions hold:

Woo,h = Too N ﬂ Wa,h

>0

lim a,(Up, Vh) = @cc(Un, Vi), YUn, Vh € Wi i
o—00

(Strong Continuity) If {||w, p||7; }+>0 is uniformly bounded and
W, ph — 0inTyas o — oo, then

lim aJ(W(,,h, Vh) =0, Vv, € Woo,h

Tg—00
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Convergence of Approximate Solutions

Suppose h > 0, previous assumptions hold. Then

||Uy.h — Uso,nll7g — O

as o — oQ.

Method of proof:
@ Asymptotic compact embedding yields subsequence of
{Uy, n}52 4 convergent to u, p in Ty
@ Show decay of a, (U, n — Uy p, V) and
8y (Us,hy Vh) — 8oo(Ush, V)
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Asymptotically Compatible Schemes

Definition

A family of convergent approximations {U, n}s>0 n>0 IS
asymptotically compatible to u., if whenever

on — 00, hy — 0T, we obtain

HUO'n,hn - UOOH% — o

| A

Theorem

Under the aforementioned assumptions, {U, n},>0 n>0 IS an
asymptotically compatible family.
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Nonlocal Model Setup

Interaction domain:

Q7 = {y e RY\ Q,dist(y,dQ) < 1}

Nonlocal operator:
£ux) = =2 | (u) = a0 (x. )y
The kernel ~(-, -) is nonnegative, radial, and symmetric, with

A1) = 1€77(€]) € Lig(RY)
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Nonlocal Model Setup (cont’d)

Define rescaled kernels, § € (0,1]:

sl = 57 (%)

wll) = sz ()

Nonlocal Volume Constrained Problem:

Lou=1f onQ
u=0, on 9N
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Nonlocal Model Setup (cont’d)

Energy space (¢ € (0, 1]) define S;:

{ue 3(Qy): / / s(Ix—yD)(u(x)~u(y))Paxdy < o0, ula, = O}

Inner product:

= [ - e - s - vy
Q JBs(x)

Define Sp := HJ(£2), with inner product/norm:
V)s, i= / Ju(x) - s7v(x)dx

U], = /\v X)[2dx
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Nonlocal Model Setup (cont’d)

Bilinear form:

fQ fB(;(x) vs(ly — x])(u(y) — u(x))(v(y) — v(x))dydx,5 > 0
Jo vu(x) - vv(x)dx,5 =0

b(g(U, V) = {
Weak formulation: find us € S5 such that for all v € S;:

b(;(u(;, V) = (f, V)Lz
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Finite Element Spaces

Let 6 € (0, 1), fix a triangulation 71, of Qs; define

Vsni={veSs Vvlk e P(K)VK € mh}
Assumptions:

@ Every function in V; 4 vanishes outside Q

eSS
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Finite Element Spaces

Let 6 € (0, 1), fix a triangulation 71, of Qs; define

Vsni={veSs Vvlk e P(K)VK € mh}
Assumptions:

@ Every function in V; 4 vanishes outside Q

@ Forany v € S;, there is a sequence vy, € Vs, where
IVh = V||s; = 0
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Setup of Asymptotic Framework

Galerkin Approximation:
Find Ush € V57h SO bg(Ug}h, V) = (f, V)Lz(Qé) Vv € V5’h

Family of subspaces for ND model:

81/0, o c [1,00]
Te = Sq, (oS (0,1)
12(Q), 0=0

e
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Asymptotic Results

Lemma

For any a € (0, 2], and a kernel ~; satisfying
1€|%vs(€]) € LY(RY), there exists C = C(Q) such that

U3, < C ( / rg|%5(|s|)ds>
Rd

for all u € H(Q) N L2(Q).

v

Lemma (Uniform Poincaré)

There exists C > 0 so for all § € (0,1],

]2y < Cllull3,

e EEEEEOTOSTSTSSSSSSSS L —-—
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Asymptotic Results (continued)

Lemma

Forany v € C¥(Q2) and x € Q, there is a pointwise limit

Lsv(x) = — A v(x)

and there exists a C = C(d, v) such that

sup sup [£5(x)| < C
0<d<1 x€Q

Lemma

Foranyv e C¥(Q),asdé — 07,

15V — (= A V)20 — O

Qe




ND
000000008000000

Asymptotic Results (continued)

Definition

\A/(;,,7 denotes continuous piecewise linear FES with mesh 7,
(same as Vj p)

Lemma (Asymptotic Density)

The family { Vs »}n=0.5-0 is asymptotically dense in Sp.

This subspace of Ha chosen to approximate Sy as h — 0"
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Asymptotic Results (continued)

Theorem (Asymptotic Convergence)

If Vs, € Vi then as § — 0 and h — 0,

|[Us.h — Uoll20) — O

Use asymptotic framework with verified assumptions:

@ 7, replaced by S/,

@ a, replaced by by,

@ A, replaced by L1/,

@ W, nreplaced by Vi,
@01/
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Finite Element Subspace

Let 7, be a triangulation, define

V= {v € C(Q), vl € C*(K), K €, vIQz, = 0}

Lemma (Convergence in Subspace)

Letu,v € Vy, thenas § — 0,

(Lsu, V)Lz(Qé) — (v, VV)L2(95) —0
For any up, vi € Vo p,

lim bs(un, vh) = bo(Un, Vh)
6—0
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Asymptotic Results (continued)

Lemma (Inverse Inequality)

If Vsh = Vo.n C So, there exists C > 0 independent of 6 such
that for all up € Vs p,

[lunllss < Cllunllzq)

Theorem
Let us » and ug n be discrete solutions to the variational
problems. If Vs, = Vo n C So, then

||Uus,n — Uo,nlls, — O

as h— 0.
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Asymptotic Results (continued)

Theorem

Assume Vs C S5 is a finite element space containing all
continuous piecewise linear functions, and that
V07h = So N (ﬂ5>0 Vg’h). Then

[|Us,n — Uo.nll2) — O

ass — 0t
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Asymptotic Results (continued)

Method of proof:

@ Let u, 5 be such that ||us h — Ui nl|2(q) — O

AR
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Asymptotic Results (continued)

Method of proof:

@ Let u, 5 be such that ||us h — Ui nl|2(q) — O
@ Sufficient to show bg(u, p, Vi) = (f, vp) by uniqueness




ND
000000000000000

Asymptotic Results (continued)

Method of proof:

@ Let u, 5 be such that ||us h — Ui nl|2(q) — O
@ Sufficient to show bg(u, p, Vi) = (f, vp) by uniqueness
@ Write (f, vy) — bo(Us p, V) =

bs(Us.p — Uy p, Vi) + [bs(Us.p, Vi) — Bo(Us p, Vh)]

A7
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Asymptotic Results (continued)

Method of proof:

@ Let u, 5 be such that ||us h — Ui nl|2(q) — O
@ Sufficient to show bg(u, p, Vi) = (f, vp) by uniqueness
@ Write (f, vy) — bo(Us p, V) =
bs(Us,h — Us,hy Vi) + [05 (Ui, Vi) — bo(Us p, Vi)]
@ Show each term decays to 0
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Asymptotic Results (continued)

Let K C 1, define
Mk == {x ¢ K,dist(x,K) <4}

and write bs(W;s p, Vi) as

3 / /K 5 = X)(Ws n(X) — w5 (X)) (Vh(X') — Vin(x)) X' cx

Kery UFK

Integrate over K x K and K x 'k and estimate from above by
Cauchy-Schwarz.




Highlights of PD Model

@ Bilinear form depends on bulk and shear modulus, same
kernel as ND model

@ Energy space: u € §* such that u = 0 on Qz, and
{Ja Ja, 00 16(IX" = xD(T(D*u)(x', x))?dx’dx < oo}

@ Utilize famlly of finite element subspaces parameterized by
mesh size

@ Asymptotic compatibility conserved for conforming finite
element approximations

@ Need continuous piecewise linear functions in the
subspaces

BO)
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Goals of Numerics

@ Verify convergence results from analytic framework
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Goals of Numerics

@ Verify convergence results from analytic framework
@ Show how convergence rates depend on decay of § and h

N TS
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Goals of Numerics

@ Verify convergence results from analytic framework
@ Show how convergence rates depend on decay of § and h
@ Relationship of § and h shown: § = h

eSS S-S
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Sample Nonlocal Problem Formulation

Define

5
Lsu = 2/675(3)(u(x +8) — u(x))ds

and consider

—Lsu=1f xe(0,1)
u=0, x ¢(0,1)

BA
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Spline Function

Define fourth order B-spline:

0, x<0

x4

120 0§X<02
UO(X) — 120

x4 x3 x2 X 1 4
430 +3@ - 12% + 750 — 15000° 0.2 =x< 0.
X X 7x X 31 4
20_ﬁ+m_%+15000’ 0. <—X<0'5

extended symmetrically to [0.5, 1]. Notice ug is continuous.

L
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Collected Data

o 0z o 3 o8 g o7 o [ o8 g

FI1G. 3. Pointwise error us p(z) — uo(z) with r = ;f =3 and h=2"%, k=3,4,5,6.




Numerics
0000e

Collected Data (comments)

@ As k gets bigger, mesh is more refined (h = 2)

TS




Numerics
0000e

Collected Data (comments)

@ As k gets bigger, mesh is more refined (h = 2)

@ uj is continuous but the error approximations have
discontinuities

NS




Numerics
0000e

Collected Data (comments)

@ As k gets bigger, mesh is more refined (h = 2)

@ uj is continuous but the error approximations have
discontinuities

@ Discretization errors more apparent for smaller h

BQ




Numerics
0000e

Collected Data (comments)

@ As k gets bigger, mesh is more refined (h = 2)

@ uj is continuous but the error approximations have
discontinuities

@ Discretization errors more apparent for smaller h
@ Modeling error less noticeable for smaller h (and 6)
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Q: What other relationships are considered besides § = h?

A: 6 = h? or § = v/h (with some flexibility)

Q: Why wait so long to introduce

limy o0 a(,(uh, Vh) = aoo(uh, Vh)?

A: Only pertinent on subspaces when ¢ is not taken as fixed.
Q: Why assume lim,_, || AcU — AsoU||7, = 01in 7.7

A: Needed for convergence of solutions to variational problems
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