Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	0000000000000000	o	00000	o	

Asymptotically Compatible Schemes for Discretization of Nonlocal Problems

Joshua M. Siktar University of Tennessee-Knoxville

> April 28, 2021 jsiktar@vols.utk.edu

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
●○○	00000000000	00000000000000000	o	00000	o	
Paper	Highlighted					

X. Tian, Q. Du (2014). Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models. SIAM J. Numer. Anal. **52**(4), 1641-1665.

Areas of emphasis

Functional analysis

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
●○○	00000000000	0000000000000000	o	00000	o	
Paper	Highlighted					

X. Tian, Q. Du (2014). Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models. SIAM J. Numer. Anal. **52**(4), 1641-1665.

Areas of emphasis

- Functional analysis
- Nonlocal modeling/peridynamics (PD)

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
●○○	00000000000	0000000000000000	o	00000	o	
Paper	Highlighted					

X. Tian, Q. Du (2014). Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models. SIAM J. Numer. Anal. **52**(4), 1641-1665.

Areas of emphasis

- Functional analysis
- Nonlocal modeling/peridynamics (PD)
- Numerical analysis

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
o●o	00000000000	0000000000000000	o	00000	o	
Story	of the Paper					

• Discretization of nonlocal models (PD/ND)

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
o●o	00000000000	00000000000000000	o	00000	o	
Story	of the Paper					

- Discretization of nonlocal models (PD/ND)
- Consider models both with fixed parameter and in the limit

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
○●○	00000000000	000000000000000	o	00000	o	
Story	of the Paper					

- Discretization of nonlocal models (PD/ND)
- Consider models both with fixed parameter and in the limit
- Design a framework with analytic properties

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
○●○	00000000000	00000000000000000	o	00000	o	
Story	of the Paper					

- Discretization of nonlocal models (PD/ND)
- Consider models both with fixed parameter and in the limit
- Design a framework with analytic properties
- Construct suitable finite element spaces for Galerkin approximations

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
○○●	00000000000	0000000000000000	o	00000	o	
Outlin	e of Talk					

• Functional Analytic Framework

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
○○●	00000000000	00000000000000000	o	00000	o	
Outlin	e of Talk					

- Functional Analytic Framework
- Analysis of Nonlocal Model

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
○○●	00000000000	00000000000000000	o	00000	o	
Outlin	e of Talk					

- Functional Analytic Framework
- Analysis of Nonlocal Model
- Applications to ND/PD Framework

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
○○●	00000000000	00000000000000000	o	00000	o	
Outlin	e of Talk					

- Functional Analytic Framework
- Analysis of Nonlocal Model
- Applications to ND/PD Framework
- Numerics

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	●00000000000	000000000000000000	o	00000	o	
Setup						

• $\{(\mathcal{T}_{\sigma}, || \cdot ||_{\sigma})\}_{\sigma \geq 0}$ decreasing family of Hilbert spaces

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	●00000000000	000000000000000000	o	00000	o	
Setup						

• $\{(\mathcal{T}_{\sigma}, || \cdot ||_{\sigma})\}_{\sigma \geq 0}$ decreasing family of Hilbert spaces • Inner products $(\cdot, \cdot)_{\mathcal{T}_{\sigma}}$

Intro 000	FAF ●00000000000	ND 000000000000000000	PD o	Numerics 00000	Ref o	Acknowledgments
Setup						

- {(*T*_σ, || · ||_σ)}_{σ≥0} decreasing family of Hilbert spaces
 Inner products (·, ·)_{*T*_σ}
- $\mathcal{T}_{-\sigma} := \mathcal{T}_{\sigma}^*$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	0●000000000	0000000000000000	o	00000	o	
Assur	notions					

Definition

Uniform Embedding: There exist $M_1, M_2 > 0$ such that

 $M_1||u||_{\mathcal{T}_0} \leq ||u||_{\mathcal{T}_{\sigma}}, \ \forall u \in \mathcal{T}_{\sigma}$

$$||u||_{\mathcal{T}_{\sigma}} \leq M_2 ||u||_{\mathcal{T}_{\infty}}, \ \forall u \in \mathcal{T}_{\infty}$$

Definition

Asymptotic Compact Embedding: For $\{u_n\}_{n>0}$ with C > 0 s.t. $||u_n||_{\mathcal{T}_n} \leq C$, $\{u_n\}_{n>0}$ is relatively compact in \mathcal{T}_0 .

Acour	mations (con	tinued					
Intro 000	FAF ००●०००००००	ND 000000000000000000	PD o	Numerics	Ref o	Acknowledgments	

For $\sigma \in [0,\infty]$, $a_{\sigma} : \mathcal{T}_{\sigma} \times \mathcal{T}_{\sigma} \to \mathbb{R}$ a symmetric bilinear form:

Definition

Coercive: there exists $C_1 > 0$ s.t.

$$a_{\sigma}(u, u) \geq C_1 ||u||_{\mathcal{T}_{\sigma}}^2, \ \forall u \in \mathcal{T}_{\sigma}$$

Definition

Bounded: there exists $C_2 > 0$ s.t.

$$a_{\sigma}(u,v) \leq C_2 ||u||_{\mathcal{T}_{\sigma}} ||v||_{\mathcal{T}_{\sigma}}, \ orall u, v \in \mathcal{T}_{\sigma}$$

Acour	nntione (oon	tipuod)				
Intro 000	FAF ०००●०००००००	ND 0000000000000000	PD o	Numerics	Ref o	Acknowledgments

Induce $\mathcal{A}_{\sigma}: \mathcal{T}_{\sigma} \to \mathcal{T}_{-\sigma}$ so $\langle \mathcal{A}_{\sigma}u, v \rangle = a_{\sigma}(u, v)$, and choose \mathcal{T}_* a subspace of \mathcal{T}_{∞} :

• \mathcal{T}_* is dense in \mathcal{T}_∞ and in \mathcal{T}_σ when $\mathcal{A}_\sigma u \in \mathcal{T}_0$ for all $u \in \mathcal{T}_*$

-						
Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	०००●०००००००	0000000000000000	o	00000	o	

Induce $\mathcal{A}_{\sigma}: \mathcal{T}_{\sigma} \to \mathcal{T}_{-\sigma}$ so $\langle \mathcal{A}_{\sigma} u, v \rangle = a_{\sigma}(u, v)$, and choose \mathcal{T}_* a subspace of \mathcal{T}_{∞} :

- \mathcal{T}_* is dense in \mathcal{T}_∞ and in \mathcal{T}_σ when $\mathcal{A}_\sigma u \in \mathcal{T}_0$ for all $u \in \mathcal{T}_*$
- $\lim_{\sigma \to \infty} ||\mathcal{A}_{\sigma}u \mathcal{A}_{\infty}u||_{\mathcal{T}_{-\sigma}} = 0$ for all $u \in \mathcal{T}_*$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	0000●000000	00000000000000000	o	00000	o	
Subsp	oace Parame	terization				

Reminiscent of Galerkin approximations, *h* meshing parameter

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	0000●000000	00000000000000000	o	00000	o	
Subsp	ace Parame	terization				

- Reminiscent of Galerkin approximations, *h* meshing parameter
- Considering $\sigma \to \infty$ with *h* fixed

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	0000●000000	00000000000000000	o	00000	o	
Subsp	oace Parame	terization				

- Reminiscent of Galerkin approximations, *h* meshing parameter
- Considering $\sigma \to \infty$ with *h* fixed
- Considering $\sigma \rightarrow \infty, h \rightarrow 0^+$ simultaneously

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	0000●000000	00000000000000000	o	00000	o	
Subsp	oace Parame	terization				

- Reminiscent of Galerkin approximations, *h* meshing parameter
- Considering $\sigma \to \infty$ with *h* fixed
- Considering $\sigma \rightarrow \infty, h \rightarrow 0^+$ simultaneously
- Nonlocal vector-valued problems: σ is a horizon parameter

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	0000000000000000	o	00000	o	
Assur	nptions (con	tinued)				

Let $h \in (0, h_0]$. Then we assume:

• For any $\sigma \in [0, \infty]$, $v \in T_{\sigma}$, there exists sequence $v_n \in \{W_{\sigma,h_n}\}_{n=1}^{\infty}$ with $h_n \to 0$ and $||v - v_n||_{T_{\sigma}} \to 0$ as $n \to \infty$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000●00000	0000000000000000	o	00000	o	
Assur	nptions (con	tinued)				

Let $h \in (0, h_0]$. Then we assume:

- For any $\sigma \in [0, \infty]$, $v \in T_{\sigma}$, there exists sequence $v_n \in \{W_{\sigma,h_n}\}_{n=1}^{\infty}$ with $h_n \to 0$ and $||v v_n||_{T_{\sigma}} \to 0$ as $n \to \infty$
- (Asymptotic Density) For any v ∈ T_∞, there exists sequence v_n ∈ {W_{σ,hn}}[∞]_{n=1} with h_n → 0 and ||v − v_n||_{T_∞} → 0 as n → ∞

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments			
000	000000●0000	000000000000000000	o	00000	o				
Paran	Parameterized Variational Problems								

Standard Problem: Given $f \in T_0$, find $u_{\sigma} \in T_{\sigma}$ such that

$$a_{\sigma}(u_{\sigma}, v) = (f, v)_{\mathcal{T}_0}, \ \forall v \in \mathcal{T}_{\sigma}$$

Subspace Problem: Find $u_{\sigma,h} \in W_{\sigma,h}$ such that

$$a_{\sigma}(u_{\sigma,h},v)=(f,v)_{\mathcal{T}_0}, \ \forall v\in W_{\sigma,h}$$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	0000000000000	0000000000000000	o	00000	o	

Convergence Theorems

Theorem

As $\sigma
ightarrow \infty$,

$$||u_{\sigma} - u_{\infty}||_{\mathcal{T}_0} \rightarrow 0.$$

Theorem

Fix $\sigma \in [0,\infty]$. Then there exists C > 0 (independent of h) so that

$$||u_{\sigma,h} - u_{\sigma}||_{\mathcal{T}_{\sigma}} \leq C \inf_{\mathsf{v}_{\sigma,h} \in W_{\sigma,h}} ||\mathsf{v}_{\sigma,h} - u_{\sigma}||_{\mathcal{T}_{\sigma}} \to 0$$

as $h \rightarrow 0^+$.

Remark: This proof follows from coercivity and boundedness.

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments			
000	00000000000000000000000000000000000	0000000000000000000	o	00000	o	oo			
Conve	Convergence of Approximate Solutions								

Assume the following additional assumptions hold:

$$W_{\infty,h} = \mathcal{T}_{\infty} \cap \left(\bigcap_{\sigma \geq 0} W_{\sigma,h}\right)$$

 $\lim_{\sigma \to \infty} a_{\sigma}(u_h, v_h) = a_{\infty}(u_h, v_h), \ \forall u_h, v_h \in W_{\infty, h}$

(Strong Continuity) If $\{||w_{\sigma,h}||_{\mathcal{T}_{\sigma}}\}_{\sigma>0}$ is uniformly bounded and $w_{\sigma,h} \to 0$ in \mathcal{T}_0 as $\sigma \to \infty$, then

$$\lim_{\sigma \to \infty} \textit{\textit{a}}_{\sigma}(\textit{\textit{w}}_{\sigma,\textit{h}},\textit{\textit{v}}_{h}) = 0, \; \forall \textit{\textit{v}}_{h} \in \textit{\textit{W}}_{\infty,\textit{h}}$$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
	00000000000					

Convergence of Approximate Solutions

Theorem

Suppose h > 0, previous assumptions hold. Then

$$||u_{\sigma,h} - u_{\infty,h}||_{\mathcal{T}_0} \to 0$$

as $\sigma \to \infty$.

- Asymptotic compact embedding yields subsequence of {u_{σn,h}}[∞]_{n=1} convergent to u_{*,h} in T₀
- Show decay of $a_{\sigma}(u_{\sigma,h} u_{*,h}, v_h)$ and $a_{\sigma}(u_{*,h}, v_h) a_{\infty}(u_{*,h}, v_h)$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
	0000000000					

Asymptotically Compatible Schemes

Definition

A family of convergent approximations $\{u_{\sigma,h}\}_{\sigma>0,h>0}$ is asymptotically compatible to u_{∞} if whenever $\sigma_n \to \infty, h_n \to 0^+$, we obtain

$$||u_{\sigma_n,h_n} - u_{\infty}||_{\mathcal{T}_0} \rightarrow 0$$

Theorem

Under the aforementioned assumptions, $\{u_{\sigma,h}\}_{\sigma>0,h>0}$ is an asymptotically compatible family.

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	•00000000000000	o	00000	o	
Nonlo	cal Model Se	tup				

Interaction domain:

$$\Omega_{\mathcal{I}} = \{ \boldsymbol{y} \in \mathbb{R}^d \setminus \Omega, \mathsf{dist}(\boldsymbol{y}, \partial \Omega) \leq 1 \}$$

Nonlocal operator:

$$\mathcal{L}u(x) = -2\int_{\Omega}(u(y) - u(x))\gamma(x, y)dy$$

The kernel $\gamma(\cdot, \cdot)$ is nonnegative, radial, and symmetric, with

$$\hat{\gamma}(|\xi|) = |\xi|^2 \gamma(|\xi|) \in L^1_{\mathsf{loc}}(\mathbb{R}^d)$$

Nonlo	ool Model Ce	tun (contid)				
Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	○●○○○○○○○○○○○○○	o	00000	o	

Define rescaled kernels, $\delta \in (0, 1]$:

$$\hat{\gamma}_{\delta}(|\xi|) := rac{1}{\delta^{d}} \hat{\gamma}\left(rac{|\xi|}{\delta}
ight)$$
 $\gamma_{\delta}(|\xi|) := rac{1}{\delta^{d+2}} \gamma\left(rac{|\xi|}{\delta}
ight)$

Nonlocal Volume Constrained Problem:

$$\begin{cases} \mathcal{L}_0 u = f, \text{ on } \Omega \\ u = 0, \quad \text{ on } \partial \Omega \end{cases}$$

000	0000000000	000000000000000000000000000000000000000	0	00000	0	00		
Nonlocal Model Setup (cont'd)								

Energy space ($\delta \in (0, 1]$) define S_{δ} :

$$\{u \in L^2(\Omega_{\delta}) : \int_{\Omega} \int_{B_{\delta}(x)} \gamma_{\delta}(|x-y|) (u(x)-u(y))^2 dx dy < \infty, u|_{\Omega_{\mathcal{I}_{\delta}}} = 0\}$$

Inner product:

$$(u,v)_{\mathcal{S}_{\delta}} := \int_{\Omega} \int_{B_{\delta}(x)} \gamma_{\delta}(|x-y|)(u(x)-u(y))(v(x)-v(y))dxdy$$

Define $S_0 := H_0^1(\Omega)$, with inner product/norm:

$$(u, v)_{\mathcal{S}_0} := \int_{\Omega} \bigtriangledown u(x) \cdot \bigtriangledown v(x) dx$$

 $||u||_{\mathcal{S}_0}^2 := \int_{\Omega} |\bigtriangledown u(x)|^2 dx$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	०००●००००००००००	o	00000	o	oo
Nonle	ocal Model S	etup (cont'd)				

Bilinear form:

$$b_{\delta}(u,v) = \begin{cases} \int_{\Omega} \int_{B_{\delta}(x)} \gamma_{\delta}(|y-x|)(u(y)-u(x))(v(y)-v(x))dydx, \delta > 0\\ \int_{\Omega} \nabla u(x) \cdot \nabla v(x)dx, \delta = 0 \end{cases}$$

Weak formulation: find $u_{\delta} \in S_{\delta}$ such that for all $v \in S_{\delta}$:

$$b_{\delta}(u_{\delta},v)=(f,v)_{L^2}$$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	००००●०००००००००	o	00000	o	
Finite	Element Spa	ices				

Let $\delta \in (0, 1)$, fix a triangulation τ_h of Ω_{δ} ; define

$$V_{\delta,h} := \{ v \in \mathcal{S}_{\delta}, v |_{K} \in P(K) \ \forall K \in \tau_{h} \}$$

Assumptions:

• Every function in $V_{\delta,h}$ vanishes outside Ω

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	००००●०००००००००	o	00000	o	
Finite	Element Spa	ices				

Let $\delta \in (0, 1)$, fix a triangulation τ_h of Ω_{δ} ; define

$$V_{\delta,h} := \{ v \in \mathcal{S}_{\delta}, v |_{K} \in \mathcal{P}(K) \ \forall K \in \tau_{h} \}$$

Assumptions:

- Every function in V_{δ,h} vanishes outside Ω
- For any $v \in S_{\delta}$, there is a sequence $v_h \in V_{\delta,h}$ where $||v_h v||_{S_{\delta}} \to 0$

000	00000000000	00000000000000000	00000	00

Setup of Asymptotic Framework

Galerkin Approximation:

Find $u_{\delta,h} \in V_{\delta,h}$ so $b_{\delta}(u_{\delta,h}, v) = (f, v)_{L^2(\Omega_{\delta})} \ \forall v \in V_{\delta,h}$

Family of subspaces for ND model:

$$\mathcal{T}_{\sigma} \ := \ egin{cases} \mathcal{S}_{1/\sigma}, & \sigma \in [1,\infty] \ \mathcal{S}_{1}, & \sigma \in (0,1) \ \mathcal{L}^2_0(\Omega), & \sigma = 0 \end{cases}$$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	00000000000000	o	00000	o	
Asvm	ototic Result	S				

Lemma

For any $\alpha \in (0, 2]$, and a kernel γ_{δ} satisfying $|\xi|^{\alpha}\gamma_{\delta}(|\xi|) \in L^{1}(\mathbb{R}^{d})$, there exists $C = C(\Omega)$ such that

$$||u||_{\mathcal{S}_{\delta}}^2 \leq oldsymbol{C}\left(\int_{\mathbb{R}^d} |\xi|^lpha \gamma_\delta(|\xi|) oldsymbol{d} \xi
ight)$$

for all $u \in H_0^{\alpha/2}(\Omega) \cap L_0^2(\Omega)$.

Lemma (Uniform Poincaré)

There exists C > 0 so for all $\delta \in (0, 1]$,

 $||u||_{L^2(\Omega_{\delta})}^2 \leq C||u||_{\mathcal{S}_{\delta}}^2$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	0000000●0000000	o	00000	o	
Asym	ptotic Result	ts (continued)				

Lemma

For any $v \in C_C^{\infty}(\Omega)$ and $x \in \Omega$, there is a pointwise limit

$$\mathcal{L}_{\delta} \mathsf{v}(\mathsf{x})
ightarrow - riangle \mathsf{v}(\mathsf{x})$$

and there exists a C = C(d, v) such that

$$\sup_{0<\delta<1}\sup_{x\in\Omega}|\mathcal{L}_{\delta}(x)|\leq C$$

Lemma

For any $v \in C_C^{\infty}(\Omega)$, as $\delta \to 0^+$,

$$||\mathcal{L}_{\delta} \mathbf{v} - (-\bigtriangleup \mathbf{v})||_{L^{2}(\Omega)}
ightarrow \mathbf{0}$$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
		000000000000000				

Asymptotic Results (continued)

Definition

 $\hat{V}_{\delta,h}$ denotes continuous piecewise linear FES with mesh au_h (same as $V_{\delta,h}$)

Lemma (Asymptotic Density)

The family $\{\hat{V}_{\delta,h}\}_{h>0,\delta>0}$ is asymptotically dense in \mathcal{S}_0 .

This subspace of H_0^1 chosen to approximate \mathcal{S}_0 as $h \to 0^+$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	०००००००००●०००००	o	00000	○	

Asymptotic Results (continued)

Theorem (Asymptotic Convergence)

If
$$\hat{V}_{\delta,h} \subset V_{\delta,h}$$
 then as $\delta \to 0$ and $h \to 0$,

$$||u_{\delta,h}-u_0||_{L^2(\Omega)} \rightarrow 0$$

Use asymptotic framework with verified assumptions:

- \mathcal{T}_{σ} replaced by $\mathcal{S}_{1/\sigma}$
- a_{σ} replaced by $b_{1/\sigma}$
- \mathcal{A}_{σ} replaced by $\mathcal{L}_{1/\sigma}$
- $W_{\sigma,h}$ replaced by $V_{1/\sigma,h}$
- $\delta \leftrightarrow \mathbf{1}/\sigma$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	000000000000000000000000000000000000	o	00000	o	
Finite	Element Sub	ospace				

Let τ_h be a triangulation, define

$$\mathcal{V}_h := \{ \mathbf{v} \in \mathbf{C}(\overline{\Omega_\delta}), \mathbf{v}|_{\mathbf{K}} \in \mathbf{C}^\infty(\overline{\mathbf{K}}), \ \mathbf{K} \in \tau_h, \mathbf{v}|\Omega_{\mathcal{I}_\delta} = \mathbf{0} \}$$

Lemma (Convergence in Subspace)

Let $u, v \in \mathcal{V}_h$, then as $\delta \to 0$,

$$(\mathcal{L}_{\delta} u, v)_{L^{2}(\Omega_{\delta})} - (\bigtriangledown u, \bigtriangledown v)_{L^{2}(\Omega_{\delta})} \rightarrow 0$$

For any $u_h, v_h \in V_{0,h}$,

$$\lim_{\delta\to 0} b_{\delta}(u_h, v_h) = b_0(u_h, v_h)$$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000				00000		

Asymptotic Results (continued)

Lemma (Inverse Inequality)

If $V_{\delta,h} = V_{0,h} \subset S_0$, there exists C > 0 independent of δ such that for all $u_h \in V_{\delta,h}$,

 $||u_h||_{\mathcal{S}_{\delta}} \leq C||u_h||_{L^2(\Omega)}$

Theorem

Let $u_{\delta,h}$ and $u_{0,h}$ be discrete solutions to the variational problems. If $V_{\delta,h} = V_{0,h} \subset S_0$, then

$$||u_{\delta,h} - u_{0,h}||_{\mathcal{S}_0} \rightarrow 0$$

as $h \rightarrow 0$.

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
		000000000000000000000000000000000000000				

Asymptotic Results (continued)

Theorem

Assume $V_{\delta,h} \subset S_{\delta}$ is a finite element space containing all continuous piecewise linear functions, and that $V_{0,h} = S_0 \cap (\bigcap_{\delta > 0} V_{\delta,h})$. Then

$$||u_{\delta,h} - u_{0,h}||_{L^2(\Omega)} \rightarrow 0$$

as $\delta \rightarrow 0^+$.

Aoum	ntotio Rocult	(continued)				
Intro 000	FAF 000000000000	ND ०००००००००००००	PD o	Numerics	Ref o	Acknowledgments

• Let
$$u_{*,h}$$
 be such that $||u_{\delta,h} - u_{*,h}||_{L^2(\Omega)} \to 0$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	000000000000000000000000	o	00000	o	
Asym	ntatic Result	e (continued)				

- Let $u_{*,h}$ be such that $||u_{\delta,h} u_{*,h}||_{L^2(\Omega)} \to 0$
- Sufficient to show $b_0(u_{*,h}, v_h) = (f, v_h)$ by uniqueness

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	०००००००००००००	o	00000	o	
Asym	ptotic Result	s (continued)				

- Let $u_{*,h}$ be such that $||u_{\delta,h} u_{*,h}||_{L^2(\Omega)} \to 0$
- Sufficient to show $b_0(u_{*,h}, v_h) = (f, v_h)$ by uniqueness

• Write
$$(f, v_h) - b_0(u_{*,h}, v_h) = b_{\delta}(u_{\delta,h} - u_{*,h}, v_h) + [b_{\delta}(u_{*,h}, v_h) - b_0(u_{*,h}, v_h)]$$

000	0000000000	0000000000000000000000	00000	00
Asvn	nptotic Resul	ts (continued)		

- Let $u_{*,h}$ be such that $||u_{\delta,h} u_{*,h}||_{L^2(\Omega)} \to 0$
- Sufficient to show $b_0(u_{*,h}, v_h) = (f, v_h)$ by uniqueness
- Write $(f, v_h) b_0(u_{*,h}, v_h) = b_{\delta}(u_{\delta,h} u_{*,h}, v_h) + [b_{\delta}(u_{*,h}, v_h) b_0(u_{*,h}, v_h)]$
- Show each term decays to 0

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	000000000000	०००००००००००००	o	00000	o	
Asvn	nototic Resu	Its (continued)				

Let $K \subset \tau_h$, define

$$\Gamma_{\mathcal{K}} := \{ x \notin \mathcal{K}, \operatorname{dist}(x, \mathcal{K}) \leq \delta \}$$

and write $b_{\delta}(w_{\delta,h}, v_h)$ as

$$\sum_{K \in \tau_h} \int_K \int_{K \cup \Gamma_K} \gamma_{\delta}(x'-x) (w_{\delta,h}(x')-w_{\delta,h}(x)) (v_h(x')-v_h(x)) dx' dx$$

Integrate over $K \times K$ and $K \times \Gamma_K$ and estimate from above by Cauchy-Schwarz.

- Bilinear form depends on bulk and shear modulus, same kernel as ND model
- Energy space: $u \in S^*$ such that u = 0 on $\Omega_{\mathcal{I}_{\delta}}$ and $\{\int_{\Omega} \int_{B_{\delta}(x)} \gamma_{\delta}(|x'-x|)(\operatorname{Tr}(\mathcal{D}^*u)(x',x))^2 dx' dx < \infty\}$
- Utilize family of finite element subspaces parameterized by mesh size
- Asymptotic compatibility conserved for conforming finite element approximations
- Need continuous piecewise linear functions in the subspaces

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	00000000000000000	o	●0000	o	
Goals	of Numerics	;				

• Verify convergence results from analytic framework

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	000000000000000000	o	●0000	o	
Goals	of Numeric	S				

- Verify convergence results from analytic framework
- Show how convergence rates depend on decay of δ and h

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	00000000000000000	o	●0000	o	
Goals	of Numerics	5				

- Verify convergence results from analytic framework
- Show how convergence rates depend on decay of δ and h
- Relationship of δ and h shown: $\delta = h$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	0000000000000000	o	0e000	o	

Sample Nonlocal Problem Formulation

Define

$$\mathcal{L}_{\delta} u = 2 \int_{-\delta}^{\delta} \gamma_{\delta}(s) (u(x+s) - u(x)) ds$$

and consider

$$\begin{cases} -\mathcal{L}_{\delta} u = f, \ x \in (0,1) \\ u = 0, \qquad x \notin (0,1) \end{cases}$$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	00000000000000000	o	00000	○	
Spline	Function					

Define fourth order B-spline:

$$u_0(x) = \begin{cases} 0, & x < 0 \\ \frac{x^4}{120}, & 0 \le x < 0.2 \\ -\frac{x^4}{30} + \frac{x^3}{30} - \frac{x^2}{100} + \frac{x}{750} - \frac{1}{15000}, & 0.2 \le x < 0.4 \\ \frac{x^4}{20} - \frac{x^3}{10} + \frac{7x^2}{100} - \frac{x}{50} + \frac{31}{15000}, & 0.4 \le x < 0.5 \end{cases}$$

extended symmetrically to [0.5, 1]. Notice u_0'' is continuous.

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	00000000000000000	o	○○○●○	○	
Coller	ted Data					

FIG. 3. Pointwise error $u_{\delta,h}(x) - u_0(x)$ with $r = \frac{\delta}{h} = 3$ and $h = 2^{-k}$, k = 3, 4, 5, 6.

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	000000000000000000	o	○○○○●	o	
Collec	ted Data (co	omments)				

• As k gets bigger, mesh is more refined $(h = 2^{-k})$

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	000000000000000	o	○○○○●	o	
Collec	ted Data (co	mments)				

- As k gets bigger, mesh is more refined $(h = 2^{-k})$
- u_0'' is continuous but the error approximations have discontinuities

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	00000000000000000	o	○○○○●	o	
Collec	ted Data (co	mments)				

- As k gets bigger, mesh is more refined $(h = 2^{-k})$
- u₀["] is continuous but the error approximations have discontinuities
- Discretization errors more apparent for smaller h

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	00000000000000000	o	○○○○●	o	
Collec	ted Data (co	mments)				

- As *k* gets bigger, mesh is more refined $(h = 2^{-k})$
- u₀["] is continuous but the error approximations have discontinuities
- Discretization errors more apparent for smaller h
- Modeling error less noticeable for smaller h (and δ)

- Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23 (2013), pp. 493-540.
- X. Tian, Q. Du (2014). Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models. SIAM J. Numer. Anal. 52(4), 1641-1665.

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	0000000000000000	o	00000	o	●○

- Abner Salgado and the CAM organization committee
- Tadele Mengesha
- Xiaochuan Tian and Qiang Du

Intro	FAF	ND	PD	Numerics	Ref	Acknowledgments
000	00000000000	0000000000000000	o	00000	o	○●
Q& A						

Q: What other relationships are considered besides $\delta = h$? **A:** $\delta = h^2$ or $\delta = \sqrt{h}$ (with some flexibility) **Q:** Why wait so long to introduce

 $\lim_{\sigma\to\infty} a_{\sigma}(u_h, v_h) = a_{\infty}(u_h, v_h)?$

A: Only pertinent on subspaces when σ is not taken as fixed.

Q: Why assume $\lim_{\sigma\to\infty} ||\mathcal{A}_{\sigma}u - \mathcal{A}_{\infty}u||_{\mathcal{T}_{-\sigma}} = 0$ in \mathcal{T}_* ?

A: Needed for convergence of solutions to variational problems