Integral Cauchy-Schwarz and Parseval's Identity

Joshua M. Siktar University of Tennessee-Knoxville

2019 SIAM SEAS Regional Conference

jsiktar@vols.utk.edu

September 21, 2019

Outline ●0	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	L ^p oc

• Studied known proofs of Parseval's Identity

00	0000			000000	UC		
Motivation							

- Studied known proofs of Parseval's Identity
- Modified and generalized proof

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	
•0					oc

Motivation

- Studied known proofs of Parseval's Identity
- Modified and generalized proof
- New proof of Integral Cauchy-Schwarz Inequality

Outline Introdu	ction Basic Results and E	Background Proof of Integral Cauchy-S	chwarz Inequality Proof of Parseval's Identity L ^p
•• 0000			000000 00

Motivation

- Studied known proofs of Parseval's Identity
- Modified and generalized proof
- New proof of Integral Cauchy-Schwarz Inequality
- Searched for further convergence results

Outline ○●	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	L ^p oc
Outl	ine				

• Prerequisite Measure Theory

Outline ○●	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	<i>L^р</i> ос
Outl	ine				

- Prerequisite Measure Theory
- Proofs of Technical Lemmas for Integral Cauchy-Schwarz

Outline ○●	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	L ^p 00
Outl	ine				

- Prerequisite Measure Theory
- Proofs of Technical Lemmas for Integral Cauchy-Schwarz
- Proof of Integral Cauchy-Schwarz Inequality

Outline ○●	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	<i>L^р</i> ос
Outl	ine				

- Prerequisite Measure Theory
- Proofs of Technical Lemmas for Integral Cauchy-Schwarz
- Proof of Integral Cauchy-Schwarz Inequality
- Transition to Parseval's Identity

0	in e				
Outline ○●	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	L ^p oc

- Prerequisite Measure Theory
- Proofs of Technical Lemmas for Integral Cauchy-Schwarz
- Proof of Integral Cauchy-Schwarz Inequality
- Transition to Parseval's Identity
- Behavior in L^p

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	
	0000				

Main Results

Theorem (Integral Cauchy-Schwarz)

Let $E \subset \mathbb{R}^n$ be a bounded and measurable set, and let $g, h : E \to \mathbb{R}$ be bounded and measurable functions. Then

$$\left(\int_{E} g^{2} d\mu\right) \left(\int_{E} h^{2} d\mu\right) \geq \left(\int_{E} ghd\mu\right)^{2}.$$
 (2.1)

Main Results (continued)

Theorem (Parseval's Identity on Positive Functions)

Let $D \subset \mathbb{R}^n$ be a bounded and measurable set, let $f : D \to \mathbb{R}$ be bounded, positive, and measurable on D, and let $\phi_n : D \to \mathbb{R}$ be a collection of functions which are mutually orthogonal on Dwith respect to $\frac{1}{f}$ for all $n \in \mathbb{N}^+$. Let the Fourier coefficients c_n be defined as

$$c_n := \frac{\int_D \phi_n d\mu}{\int_D \frac{\phi_n^2}{f} d\mu}.$$
 (2.2)

and suppose the Fourier Expansion of $f = \sum_{n=1}^{\infty} c_n \phi_n$ exists. Then

$$\int_D f d\mu = \sum_{n=1}^\infty c_n^2 \int_D \frac{\phi_n^2}{f} d\mu.$$
 (2.3)

Main Results (continued)

Theorem (Parseval's Identity)

Let $f: E \to \mathbb{R}$ be bounded and measurable, and let the sets D_i be bounded, measurable, and mutually disjoint such that $E = \bigcup_{i=1}^{\infty} D_i$. Assume that on each D_i , f carries a unique sign (is positive, negative, or zero) and has Fourier Coefficients denoted by

$$c_{i,n} := \frac{\int_{D_i} \phi_n d\mu}{\int_{D_i} \frac{\phi_n^2}{f} d\mu}$$
(2.4)

for each $i \in \mathbb{N}^+$, and suppose the Fourier Expansion of $f = \sum_{n=1}^{\infty} c_{i,n} \phi_n$ exists. Then

$$\int_{E} f d\mu = \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} c_{i,n}^{2} \int_{D_{i}} \frac{\phi_{i,n}^{2}}{f} d\mu.$$
 (2.5)

Outline Introduction 0000

Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality

Main Results (continued)

Theorem (L^p convergence)

Let $D \subset \mathbb{R}^n$ be a bounded, measurable subset of \mathbb{R}^n , and let $f: D \to \mathbb{R}$ be a measurable function for which 0 < f < 1 on D. Fix $1 \le p < \infty$. Choose $\{\phi_n\}_{n=1}^{\infty}$ mutually orthogonal on D w.r.t. the weight function $\frac{1}{t}$. Define the Fourier Coefficients and partial sums as before, and suppose the Fourier Expansion of $f = \sum_{n=1}^{\infty} c_n \phi_n$ exists. Then $s_N \to f$ in $L^p(D)$.

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Lp
		•00			00

Our Measure Space

- £: the Lebesgue measure on ℝⁿ
- *M*: the Lebesgue-measurable subsets of ℝⁿ
- Our measure space: $(\mathbb{R}^n, \mathcal{M}, \mathcal{L})$
- Can also consider (D, M ∩ P(D), L) for a D ⊂ ℝⁿ measurable

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	
		000			00

Mutual Orthogonality

Definition (Mutual Orthogonality)

A family of [finite or countably many] functions $\{\phi_n\}$ is said to be **mutually orthogonal** with respect to a function g on a measurable set D if $\int_D \phi_m \phi_n g d\mu = 0$ whenever $m \neq n$.

We use positive weight functions of the form $\frac{1}{t}$.

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	
		000			00

L^p spaces

Definition (*L^p* space)

Let $1 \le p < \infty$. A function *f* is in $L^p(D)$ for a measurable $D \subset \mathbb{R}^n$ if

$$||f||_{L^p(D)} := \left(\int_D |f|^p d\mu\right)^{\frac{1}{p}} < \infty, \tag{3.1}$$

in which case we say the L^{p} -norm of f is $||f||_{L^{p}(D)}$.

Definition (*L*^{*p*} **convergence)**

Let $1 \le p < \infty$. A sequence of functions $f_n : D \to \mathbb{R}$ converges in L^p to a function $f : D \to \mathbb{R}$ if

$$||f_n - f||_{L^p(D)} \to 0.$$
 (3.2)

as $n \to \infty$.

Outline Introduction Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality

••••••

Proof of Parseval's Identity

Integral Cauchy-Schwarz

Theorem (Integral Cauchy-Schwarz)

Let $E \subset \mathbb{R}^n$ be a bounded and measurable set, and let $g, h: E \to \mathbb{R}$ be bounded and measurable functions. Then

$$\left(\int_{E} g^{2} d\mu\right) \left(\int_{E} h^{2} d\mu\right) \geq \left(\int_{E} ghd\mu\right)^{2}.$$
 (4.1)

Outline Introduction

Basic Results and Background Proof of Integral Cauchy-Schwarz Ineguality 00000000000

Proof of Parseval's Identity

Mean-Square Minimization Lemma

Lemma (Mean-Square Minimization)

Let $D \subset \mathbb{R}^n$ be a bounded and measurable set, and let $f, \phi_1 : D \to \mathbb{R}$ be bounded and measurable functions, where f only takes positive values in D. Then

$$\left(\int_{D} f d\mu\right) \left(\int_{D} \frac{\phi_{1}^{2}}{f} d\mu\right) \geq \left(\int_{D} \phi_{1} d\mu\right)^{2}.$$
 (4.2)

Construction of Orthogonal Family

- Fix $f, \phi_1 : D \to \mathbb{R}$
- Construct a mutually orthogonal family $\{\phi_n\}$ w.r.t. $\frac{1}{7}$ on D
- Can truncate after finitely many functions

In particular, $\forall i \neq j$,

$$\int_{D} \phi_{i} \phi_{j} \cdot \frac{1}{f} d\mu = 0$$
(4.3)

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	L
			0000000000		

Fourier Coefficients

Define the following:

$$c_{n} := \frac{\int_{D} \phi_{n} d\mu}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu}$$

$$s_{N} := \sum_{n=1}^{N} c_{n} \phi_{n}$$

$$(4.4)$$

If $\{\phi_n\}$ is finite we can truncate the sums and obtain an eventually constant sequence.

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Lp
			0000000000		00

Mean-Square Deviation

The proof of the lemma is motivated by minimizing

٠

$$\int_{D} (f - s_N)^2 \cdot \frac{1}{f} d\mu \tag{4.6}$$

Expand and re-complete the square:

$$\int_{D} f d\mu - 2 \sum_{n=1}^{N} c_{n} \int_{D} \phi_{n} d\mu + \sum_{n=1}^{N} c_{n}^{2} \int_{D} \frac{\phi_{n}^{2}}{f} d\mu =$$

$$\sum_{n=1}^{N} \int_{D} \frac{\phi_{n}^{2}}{f} d\mu \left(c_{n} - \frac{\int_{D} \phi_{n} d\mu}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu} \right)^{2} + \int_{D} f d\mu - \sum_{n=1}^{N} \frac{\left(\int_{D} \phi_{n} d\mu\right)^{2}}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu}.$$
(4.7)

Mean-Square Deviation (continued)

Chose values of c_n to minimize this expression, so in fact

$$\int_{D} (f - s_{N})^{2} \cdot \frac{1}{f} d\mu = \int_{D} f d\mu - \sum_{n=1}^{N} \frac{\left(\int_{D} \phi_{n} d\mu\right)^{2}}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu}.$$
 (4.8)

The left-hand side of (5.3) is nonnegative, so

$$\int_{D} f d\mu \geq \sum_{n=1}^{N} \frac{\left(\int_{D} \phi_{n} d\mu\right)^{2}}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu}.$$
(4.9)

Mean-Square Deviation (continued)

f positive, all terms of (4.9) nonnegative, so

$$\int_{D} f d\mu \geq \frac{\left(\int_{D} \phi_{1} d\mu\right)^{2}}{\int_{D} \frac{\phi_{1}^{2}}{f} d\mu}.$$
(4.10)

Multiply across:

$$\left(\int_{D} f d\mu\right) \left(\int_{D} \frac{\phi_{1}^{2}}{f} d\mu\right) \geq \left(\int_{D} \phi_{1} d\mu\right)^{2}.$$
 (4.11)

Outline Introduction

Basic Results and Background Proof of Integral Cauchy-Schwarz Ineguality 0000000000000

Proof of Parseval's Identity

Nonzero Cauchy-Schwarz

Lemma (Nonzero Cauchy-Schwarz)

Let $D \subset \mathbb{R}^n$ be a bounded and measurable set, and let $g, h: D \to \mathbb{R} \setminus \{0\}$ be bounded and measurable functions. Then

$$\left(\int_{D} g^{2} d\mu\right) \left(\int_{D} h^{2} d\mu\right) \geq \left(\int_{D} g h d\mu\right)^{2}.$$
 (4.12)

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Ľ
			00000000000		

Change of Variables

$$\left(\int_{D} f d\mu\right) \left(\int_{D} \frac{\phi_{1}^{2}}{f} d\mu\right) \geq \left(\int_{D} \phi_{1} d\mu\right)^{2}.$$
 (4.13)

Use the bijective change of variables $f = g^2$, $\phi_1 = gh$ on *D*. Obtain

$$\left(\int_{D} g^{2} d\mu\right) \left(\int_{D} h^{2} d\mu\right) \geq \left(\int_{D} ghd\mu\right)^{2}, \quad (4.14)$$

remarking *f* is positive on *D*.

Outline Introduction Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality

Proof of Parseval's Identity

Integral Cauchy-Schwarz

Theorem (Integral Cauchy-Schwarz)

Let $E \subset \mathbb{R}^n$ be a bounded and measurable set, and let $g, h: E \to \mathbb{R}$ be bounded and measurable functions. Then

$$\left(\int_{E} g^{2} d\mu\right) \left(\int_{E} h^{2} d\mu\right) \geq \left(\int_{E} ghd\mu\right)^{2}.$$
 (4.15)

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	
			00000000000		00

Filling in the Holes

Extend integral domains to zeros of g and h. Fix D:

$$D := \{x \in E, (g(x) \neq 0) \land (h(x) \neq 0)\}$$
(4.16)

$$E \setminus D = \{x \in E : (g(x) = 0) \lor (h(x) = 0)\}$$
(4.17)

Introduction Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality Outline

000000000000

Proof of Parseval's Identity

Filling in the Holes (continued)

Notice gh = 0 on $E \setminus D$, so

$$\left(\int_{D} g^{2} d\mu\right) \left(\int_{D} h^{2} d\mu\right) \geq \left(\int_{E} ghd\mu\right)^{2}.$$
 (4.18)

Result follows after realizing $\int_{F} g^2 d\mu \geq \int_{D} g^2 d\mu$ and $\int_{\Box} h^2 d\mu \geq \int_{\Box} h^2 d\mu. \Box$

Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality

Proof of Parseval's Identity 00000

Parseval's Identity on Positive Functions

Theorem (Parseval's Identity on Positive Functions)

Let $D \subset \mathbb{R}^n$ be a bounded and measurable set, let $f : D \to \mathbb{R}$ be bounded, positive, and measurable on D, and let $\phi_n : D \to \mathbb{R}$ be a collection of functions which are mutually orthogonal on D with respect to $\frac{1}{\tau}$ for all $n \in \mathbb{N}^+$. Let the Fourier coefficients c_n be defined as

$$c_n := \frac{\int_D \phi_n d\mu}{\int_D \frac{\phi_n^2}{f} d\mu},$$
(5.1)

and suppose the Fourier Expansion of $f = \sum_{n=1}^{\infty} c_n \phi_n$ exists. Then

$$\int_D f d\mu = \sum_{n=1}^\infty c_n^2 \int_D \frac{\phi_n^2}{f} d\mu.$$
 (5.2)

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity
				00000

Outline of Proof

By taking the limit in

$$\int_{D} (f - s_{N})^{2} \cdot \frac{1}{f} d\mu = \int_{D} f d\mu - \sum_{n=1}^{N} \frac{\left(\int_{D} \phi_{n} d\mu\right)^{2}}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu}, \quad (5.3)$$

we know this inequality is an equality:

$$\int_{D} f d\mu \geq \sum_{n=1}^{N} \frac{\left(\int_{D} \phi_{n} d\mu\right)^{2}}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu}.$$
(5.4)

We know *f*'s Fourier Expansion exists and is $f = \sum_{n=1}^{\infty} c_n \phi_n$. Take $N \to \infty$ in (5.4) and substitute the Fourier Coefficients to complete the proof. \Box Basic Results and Background Proof of Integral Cauchy-Schwarz Ineguality

Proof of Parseval's Identity 000000

Generalizing to Non-signed Functions

Theorem (Parseval's Identity)

Let $f: E \to \mathbb{R}$ be bounded and measurable, and let the sets D_i be bounded, measurable, and mutually disjoint such that $E = \bigcup_{i=1}^{\infty} D_i$. Assume that on each D_i , f carries a unique sign (is positive, negative, or zero) and has Fourier Coefficients denoted by

$$c_{i,n} := \frac{\int_{D_i} \phi_n d\mu}{\int_{D_i} \frac{\phi_n^2}{f} d\mu}$$
(5.5)

for each $i \in \mathbb{N}^+$. Then

$$\int_{E} f d\mu = \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} c_{i,n}^{2} \int_{D_{i}} \frac{\phi_{i,n}^{2}}{f} d\mu \qquad (5.6)$$

Outline Introduction

Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality

Proof of Parseval's Identity 000000

Countable Additivity of Integration

Lemma (Countable Additivity of Integration)

Let f be a measurable function over the measurable set E. Let $\{E_m\}_{m=1}^{\infty}$ be a disjoint, countable collection of measurable subsets of E whose union is E. Then

$$\int_{E} f d\mu = \sum_{m=1}^{\infty} \int_{E_m} f d\mu.$$
 (5.7)

Proof of Parseval's Identity 000000

Generalizing Proof to Non-signed Functions

Denote the following:

$$E_{+} := \{x \in E, f(x) > 0\}$$
 (5.8)

$$E_{-} := \{x \in E, f(x) < 0\}$$
 (5.9)

$$E_0 := \{x \in E, f(x) = 0\}$$
 (5.10)

These sets are measurable and disjoint, and $E = E_+ \cup E_- \cup E_0.$

Proof of Parseval's Identity 000000

Generalizing Proof to Non-signed Functions (continued)

By use of (5.7),

$$\int_{E} f d\mu = \int_{E_{+}} f d\mu + \int_{E_{-}} f d\mu \qquad (5.11)$$

Applying (5.2) to f on E_+ and to -f on E_- completes the proof.

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	L

The *L^p* space

Suppose $1 \le p < \infty$.

Definition (*L*^{*p*} **space)**

A function *f* is in $L^{p}(D)$ for a measurable $D \subset \mathbb{R}^{n}$ if

$$||f||_{L^p(D)} := \left(\int_D |f|^p d\mu\right)^{\frac{1}{p}} < \infty, \tag{6.1}$$

in which case we say the L^{ρ} -norm of f is $||f||_{L^{\rho}(D)}$.

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof

L^p

Convergence in *L^p*

Definition (*L*^{*p*} **convergence)**

We say that a sequence of functions $f_n : D \to \mathbb{R}$ converges in L^p to a function $f : D \to \mathbb{R}^n$ if

$$||f_n - f||_{L^p(D)} \to 0.$$
 (6.2)

as $n \to \infty$. Equivalently,

$$\lim_{n\to\infty} \left(\int_D |f_n - f|^p d\mu \right)^{\frac{1}{p}} = 0$$
 (6.3)

Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality

LP

Result: *L^p* convergence of Fourier Series

Theorem (L^{p} convergence)

Let $D \subset \mathbb{R}^n$ be a bounded, measurable subset of \mathbb{R}^n , and let $f: D \to \mathbb{R}$ be a bounded, measurable function. Fix 1 .Choose $\{\phi_n\}_{n=1}^{\infty}$ mutually orthogonal on D w.r.t. the weight function $\frac{1}{7}$. Define the Fourier Coefficients and partial sums as before, and suppose the Fourier Expansion of $f = \sum_{n=1}^{\infty} c_n \phi_n$ exists. Then $s_N \rightarrow f$ in $L^p(D)$.

Outline oo	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	<i>L^р</i> ос

$$\int_D (f - s_N)^2 \cdot \frac{1}{f} d\mu \tag{6.4}$$

• Special case: $f \leq 1$

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Lp
					00

$$\int_D (f - s_N)^2 \cdot \frac{1}{f} d\mu \tag{6.4}$$

- Special case: $f \leq 1$
- Use Integral Cauchy-Schwarz and Squeeze Theorem

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Lp
					00

$$\int_{D} (f - s_N)^2 \cdot \frac{1}{f} d\mu \tag{6.4}$$

- Special case: $f \leq 1$
- Use Integral Cauchy-Schwarz and Squeeze Theorem
- General case, $f \leq M$

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Lp
					00

$$\int_{D} (f - s_N)^2 \cdot \frac{1}{f} d\mu \tag{6.4}$$

- Special case: *f* ≤ 1
- Use Integral Cauchy-Schwarz and Squeeze Theorem
- General case, $f \leq M$
- Scale Fourier Coefficients, linearity of Lebesgue integrals

Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality

Proof of Parseval's Identity

LP

$L^{p}(D)$ convergence lemma statement

Lemma

Let $D \subset \mathbb{R}^n$ be a bounded, measurable subset of \mathbb{R}^n , and let $f: D \to \mathbb{R}$ be a measurable function for which 0 < f < 1 on D. Fix $1 \le p < \infty$. Choose $\{\phi_n\}_{n=1}^{\infty}$ mutually orthogonal on D w.r.t. the weight function $\frac{1}{4}$. Define the Fourier Coefficients and partial sums as before, and suppose the Fourier Expansion of $f = \sum_{n=1}^{\infty} c_n \phi_n$ exists.

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	I
					(

$L^p(D)$: **Proof in** $f \leq 1$ case

By Integral Cauchy-Schwarz,

$$\int_{D} |f - s_{N}|^{2} \cdot \frac{1}{f} d\mu \int_{D} |f - s_{N}|^{2p-2} \cdot \frac{1}{f} d\mu \geq \left(\int_{D} |f - s_{N}|^{p} \cdot \frac{1}{f} d\mu \right)^{2}.$$
(6.5)

LHS approaches 0 by proof of Parseval Identity; second LHS integral controlled due to boundedness of functions and set *D*

Introduction Basic Results and Background Proof of Integral Cauchy-Schwarz Ineguality Proof of Parseval's Identity Outline

Lp

00

$L^{p}(D)$: Proof in $f \leq 1$ case (continued)

Since $f \leq 1$ on D,

$$\left(\int_{D}|f-s_{N}|^{p}\cdot\frac{1}{f}d\mu\right)^{2}\geq\left(\int_{D}|f-s_{N}|^{p}d\mu\right)^{2}\geq0,\qquad(6.6)$$

so $s_N \to f$ in $L^p(D)$ by Squeeze Theorem.

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	L
					0

$L^{p}(D)$: Proof of General Case

• Suppose
$$f \leq M$$
 on D , let $g := \frac{f}{M}$.

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Ľ
					0

$L^p(D)$: Proof of General Case

- Suppose $f \leq M$ on D, let $g := \frac{f}{M}$.
- Use special case on g

$L^{p}(D)$: Proof of General Case

- Suppose $f \leq M$ on D, let $g := \frac{f}{M}$.
- Use special case on g
- The Fourier Coefficients of *f* are those of *g* scaled by factor of *M*

$L^{p}(D)$: Proof of General Case

- Suppose $f \leq M$ on D, let $g := \frac{f}{M}$.
- Use special case on g
- The Fourier Coefficients of *f* are those of *g* scaled by factor of *M*
- Linearity of Lebesgue Integrals yields general case

Outline 00	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	<i>L^р</i> ос

• Results on rate of convergence

Outline oo	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	<i>L^р</i> ос

- Results on rate of convergence
- Dissect other well-known integral identities

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Lp
					oc

- Results on rate of convergence
- Dissect other well-known integral identities
- Plancherel's Identity doesn't work

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Lp
					00

- Results on rate of convergence
- Dissect other well-known integral identities
- Plancherel's Identity doesn't work
- Use methodology of proof to prove geometric and convolution-type inequalities

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Lp
					oc

- T.M. Apostol, Another elementary proof of Euler's formula for ζ(2n), Amer. math. Monthly, (1973), 425-431.
- R. Baillie, Fun with Fourier Series, https://arxiv.org/pdf/0806.0150.pdf

References

- S.S. Dragomir, A. Sofo, An integral inequality for twice differentiable mappings and applications, Tamkang J. of Math., **30**(1999).
- L.C. Evans, *Partial Differential Equations*, 2nd Edition, American Mathematical Sciences, 2013.

Outline Introduction Basic Resu	ilts and Background Pro	oof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	LP
		000000000		00

References

- Z. Liu, Gauss Summation And Ramanujan Type Series for $\frac{1}{\pi}$, https://arxiv.org/pdf/1805.06568.pdf.
- C. Lupu, D. Orr, Approximations for Apery's Constant ζ(3) and rational series representations involving ζ(2n), https://arxiv.org/pdf/1605.09541.pdf.
- J. Miao, Convergence of Fourier Series in L^p Space, http://math.uchicago.edu/~may/REU2014/ REUPapers/Miao.pdf.
- E.R. Nwaeze, Generalized weighted trapezoid and GrÃ¹/₄ss type inequalities on time scales, Aust. J. Math. Anal. Appl., 11(1)(2017), Article 4, 113.

Outline	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	Lp
					00

References

- B.G. Pachpatte, On trapezoid and GrÃ¹/₄ss like integral inequalities, Tamkang J. of Math., **34**(4)(2003), Article 7, 366-370.
- F. Riesz, B. Sz.-Nagy, *Functional Analysis*, New York, NY:Dover, 1990.
- H. Royden, P. Fitzpatrick, *Real Analysis*, New York, NY:Pearson, 2010.
- J. Siktar, Piecewise Telescoping and Applications to Fourier Series, https://www.awesomemath.org/ wp-pdf-files/math-reflections/mr-2017-04/ piecewise_telescoping.pdf.

Outline oo	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	L ^p oc
Referen	000				

- J. Siktar, Recasting the Proof of Parseval's Identity, Turkish J. Ineq., 3(1)(2019), Article 3, 19-27.
- H. Weinberger, *A First Course in Partial Differential Equations with Complex Variables and Transform Methods*, New York, NY:Dover, 1995.
- E.C. Zachmanoglou, D.W. Thoe, *Introduction to Partial Differential Equations with Applications*, Dover Publications, 1986.
- L. Zhang, The L^p Convergence of Fourier Series, http://math.uchicago.edu/~may/REU2017/ REUPapers/Zhang, Lingxian.pdf.

Tha	Thank You							
Thank Y	Thank You							
Outline oo	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	L ^p oc			

- Special thanks to...
- Carnegie Mellon University Department of Mathematical Sciences
- University of Tennessee SIAM Chapter
- Professor Shlomo Ta'asan and Professor Jack Schaeffer
- Akanksha Kartik

Contact Info					
Contact Info					
Outline oo	Introduction	Basic Results and Background	Proof of Integral Cauchy-Schwarz Inequality	Proof of Parseval's Identity	<i>L^р</i> ос

Joshua M. Siktar University of Tennessee-Knoxville

2019 SIAM SEAS Regional Conference

jsiktar@vols.utk.edu