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Studied known proofs of Parseval’s Identity

Modified and generalized proof
New proof of Integral Cauchy-Schwarz Inequality
Searched for further convergence results
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Proof of Integral Cauchy-Schwarz Inequality
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Behavior in Lp
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Main Results

Theorem (Integral Cauchy-Schwarz)
Let E ⊂ Rn be a bounded and measurable set, and let
g,h : E → R be bounded and measurable functions. Then(∫

E
g2dµ

)(∫
E

h2dµ
)
≥
(∫

E
ghdµ

)2

. (2.1)
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Main Results (continued)

Theorem (Parseval’s Identity on Positive Functions)
Let D ⊂ Rn be a bounded and measurable set, let f : D → R be
bounded, positive, and measurable on D, and let φn : D → R be
a collection of functions which are mutually orthogonal on D
with respect to 1

f for all n ∈ N+. Let the Fourier coefficients cn
be defined as

cn :=

∫
D φndµ∫
D
φ2

n
f dµ

. (2.2)

and suppose the Fourier Expansion of f =
∑∞

n=1 cnφn exists.
Then ∫

D
fdµ =

∞∑
n=1

c2
n

∫
D

φ2
n
f

dµ. (2.3)
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Main Results (continued)

Theorem (Parseval’s Identity)
Let f : E → R be bounded and measurable, and let the sets Di
be bounded, measurable, and mutually disjoint such that
E = ∪∞i=1Di . Assume that on each Di , f carries a unique sign
(is positive, negative, or zero) and has Fourier Coefficients
denoted by

ci,n :=

∫
Di
φndµ∫

Di

φ2
n
f dµ

(2.4)

for each i ∈ N+, and suppose the Fourier Expansion of
f =

∑∞
n=1 ci,nφn exists. Then∫

E
fdµ =

∞∑
i=1

∞∑
n=1

c2
i,n

∫
Di

φ2
i,n

f
dµ. (2.5)
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Main Results (continued)

Theorem (Lp convergence)
Let D ⊂ Rn be a bounded, measurable subset of Rn, and let
f : D → R be a measurable function for which 0 < f ≤ 1 on D.
Fix 1 ≤ p <∞. Choose {φn}∞n=1 mutually orthogonal on D w.r.t.
the weight function 1

f . Define the Fourier Coefficients and
partial sums as before, and suppose the Fourier Expansion of
f =

∑∞
n=1 cnφn exists. Then sN → f in Lp(D).
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Our Measure Space

L: the Lebesgue measure on Rn

M: the Lebesgue-measurable subsets of Rn

Our measure space: (Rn,M,L)
Can also consider (D,M∩P(D),L) for a D ⊂ Rn

measurable



Outline Introduction Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality Proof of Parseval’s Identity Lp behavior Future Work Acknowledgments

Mutual Orthogonality

Definition (Mutual Orthogonality)
A family of [finite or countably many] functions {φn} is said to
be mutually orthogonal with respect to a function g on a
measurable set D if

∫
D φmφngdµ = 0 whenever m 6= n.

We use positive weight functions of the form 1
f .
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Lp spaces

Definition (Lp space)
Let 1 ≤ p <∞. A function f is in Lp(D) for a measurable
D ⊂ Rn if

||f ||Lp(D) :=

(∫
D
|f |pdµ

) 1
p

<∞, (3.1)

in which case we say the Lp-norm of f is ||f ||Lp(D).

Definition (Lp convergence)
Let 1 ≤ p <∞. A sequence of functions fn : D → R converges
in Lp to a function f : D → R if

||fn − f ||Lp(D) → 0. (3.2)

as n→∞.
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Integral Cauchy-Schwarz

Theorem (Integral Cauchy-Schwarz)
Let E ⊂ Rn be a bounded and measurable set, and let
g,h : E → R be bounded and measurable functions. Then(∫

E
g2dµ

)(∫
E

h2dµ
)
≥
(∫

E
ghdµ

)2

. (4.1)
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Mean-Square Minimization Lemma

Lemma (Mean-Square Minimization)
Let D ⊂ Rn be a bounded and measurable set, and let
f , φ1 : D → R be bounded and measurable functions, where f
only takes positive values in D. Then(∫

D
fdµ
)(∫

D

φ2
1

f
dµ

)
≥
(∫

D
φ1dµ

)2

. (4.2)
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Construction of Orthogonal Family

Fix f , φ1 : D → R
Construct a mutually orthogonal family {φn} w.r.t. 1

f on D
Can truncate after finitely many functions

In particular, ∀i 6= j , ∫
D
φiφj ·

1
f

dµ = 0 (4.3)
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Fourier Coefficients

Define the following:

cn :=

∫
D φndµ∫
D
φ2

n
f dµ

(4.4)

sN :=
N∑

n=1

cnφn (4.5)

If {φn} is finite we can truncate the sums and obtain an
eventually constant sequence.
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Mean-Square Deviation

The proof of the lemma is motivated by minimizing∫
D
(f − sN)

2 · 1
f

dµ (4.6)

Expand and re-complete the square:

∫
D

fdµ− 2
N∑

n=1

cn

∫
D
φndµ+

N∑
n=1

c2
n

∫
D

φ2
n
f

dµ =

N∑
n=1

∫
D

φ2
n
f

dµ

(
cn −

∫
D φndµ∫
D
φ2

n
f dµ

)2

+

∫
D

fdµ−
N∑

n=1

(∫
D φndµ

)2∫
D
φ2

n
f dµ

.(4.7)
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Mean-Square Deviation (continued)

Chose values of cn to minimize this expression, so in fact∫
D
(f − sN)

2 · 1
f

dµ =

∫
D

fdµ−
N∑

n=1

(∫
D φndµ

)2∫
D
φ2

n
f dµ

. (4.8)

The left-hand side of (5.3) is nonnegative, so∫
D

fdµ ≥
N∑

n=1

(∫
D φndµ

)2∫
D
φ2

n
f dµ

. (4.9)
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Mean-Square Deviation (continued)

f positive, all terms of (4.9) nonnegative, so∫
D

fdµ ≥
(∫

D φ1dµ
)2∫

D
φ2

1
f dµ

. (4.10)

Multiply across:(∫
D

fdµ
)(∫

D

φ2
1

f
dµ

)
≥
(∫

D
φ1dµ

)2

. (4.11)
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Nonzero Cauchy-Schwarz

Lemma (Nonzero Cauchy-Schwarz)
Let D ⊂ Rn be a bounded and measurable set, and let
g,h : D → R \ {0} be bounded and measurable functions. Then(∫

D
g2dµ

)(∫
D

h2dµ
)
≥
(∫

D
ghdµ

)2

. (4.12)
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Change of Variables

(∫
D

fdµ
)(∫

D

φ2
1

f
dµ

)
≥
(∫

D
φ1dµ

)2

. (4.13)

Use the bijective change of variables f = g2, φ1 = gh on D.
Obtain (∫

D
g2dµ

)(∫
D

h2dµ
)
≥
(∫

D
ghdµ

)2

, (4.14)

remarking f is positive on D.
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Integral Cauchy-Schwarz

Theorem (Integral Cauchy-Schwarz)
Let E ⊂ Rn be a bounded and measurable set, and let
g,h : E → R be bounded and measurable functions. Then(∫

E
g2dµ

)(∫
E

h2dµ
)
≥
(∫

E
ghdµ

)2

. (4.15)
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Filling in the Holes

Extend integral domains to zeros of g and h. Fix D:

D := {x ∈ E , (g(x) 6= 0) ∧ (h(x) 6= 0)} (4.16)

E \ D = {x ∈ E : (g(x) = 0) ∨ (h(x) = 0)} (4.17)
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Filling in the Holes (continued)

Notice gh = 0 on E \ D, so(∫
D

g2dµ
)(∫

D
h2dµ

)
≥
(∫

E
ghdµ

)2

. (4.18)

Result follows after realizing
∫

E g2dµ ≥
∫

D g2dµ and∫
E h2dµ ≥

∫
D h2dµ. �
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Parseval’s Identity on Positive Functions

Theorem (Parseval’s Identity on Positive Functions)
Let D ⊂ Rn be a bounded and measurable set, let f : D → R be
bounded, positive, and measurable on D, and let φn : D → R be
a collection of functions which are mutually orthogonal on D
with respect to 1

f for all n ∈ N+. Let the Fourier coefficients cn
be defined as

cn :=

∫
D φndµ∫
D
φ2

n
f dµ

, (5.1)

and suppose the Fourier Expansion of f =
∑∞

n=1 cnφn exists.
Then ∫

D
fdµ =

∞∑
n=1

c2
n

∫
D

φ2
n
f

dµ. (5.2)
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Outline of Proof

By taking the limit in∫
D
(f − sN)

2 · 1
f

dµ =

∫
D

fdµ−
N∑

n=1

(∫
D φndµ

)2∫
D
φ2

n
f dµ

, (5.3)

we know this inequality is an equality:∫
D

fdµ ≥
N∑

n=1

(∫
D φndµ

)2∫
D
φ2

n
f dµ

. (5.4)

We know f ’s Fourier Expansion exists and is f =
∑∞

n=1 cnφn.
Take N →∞ in (5.4) and substitute the Fourier Coefficients to
complete the proof. �
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Generalizing to Non-signed Functions

Theorem (Parseval’s Identity)
Let f : E → R be bounded and measurable, and let the sets Di
be bounded, measurable, and mutually disjoint such that
E = ∪∞i=1Di . Assume that on each Di , f carries a unique sign
(is positive, negative, or zero) and has Fourier Coefficients
denoted by

ci,n :=

∫
Di
φndµ∫

Di

φ2
n
f dµ

(5.5)

for each i ∈ N+. Then∫
E

fdµ =
∞∑

i=1

∞∑
n=1

c2
i,n

∫
Di

φ2
i,n

f
dµ (5.6)
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Countable Additivity of Integration

Lemma (Countable Additivity of Integration)
Let f be a measurable function over the measurable set E. Let
{Em}∞m=1 be a disjoint, countable collection of measurable
subsets of E whose union is E. Then∫

E
fdµ =

∞∑
m=1

∫
Em

fdµ. (5.7)
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Generalizing Proof to Non-signed Functions

Denote the following:

E+ := {x ∈ E , f (x) > 0} (5.8)

E− := {x ∈ E , f (x) < 0} (5.9)

E0 := {x ∈ E , f (x) = 0} (5.10)

These sets are measurable and disjoint, and
E = E+ ∪ E− ∪ E0.
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Generalizing Proof to Non-signed Functions (continued)

By use of (5.7), ∫
E

fdµ =

∫
E+

fdµ+

∫
E−

fdµ (5.11)

Applying (5.2) to f on E+ and to −f on E− completes the proof.
�
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The Lp space

Suppose 1 ≤ p <∞.

Definition (Lp space)
A function f is in Lp(D) for a measurable D ⊂ Rn if

||f ||Lp(D) :=

(∫
D
|f |pdµ

) 1
p

<∞, (6.1)

in which case we say the Lp-norm of f is ||f ||Lp(D).
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Convergence in Lp

Definition (Lp convergence)
We say that a sequence of functions fn : D → R converges in
Lp to a function f : D → Rn if

||fn − f ||Lp(D) → 0. (6.2)

as n→∞. Equivalently,

lim
n→∞

(∫
D
|fn − f |pdµ

) 1
p

= 0 (6.3)
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Result: Lp convergence of Fourier Series

Theorem (Lp convergence)
Let D ⊂ Rn be a bounded, measurable subset of Rn, and let
f : D → R be a bounded, measurable function. Fix 1 ≤ p <∞.
Choose {φn}∞n=1 mutually orthogonal on D w.r.t. the weight
function 1

f . Define the Fourier Coefficients and partial sums as
before, and suppose the Fourier Expansion of f =

∑∞
n=1 cnφn

exists. Then sN → f in Lp(D).
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Proof Outline

∫
D
(f − sN)

2 · 1
f

dµ (6.4)

Special case: f ≤ 1

Use Integral Cauchy-Schwarz and Squeeze Theorem
General case, f ≤ M
Scale Fourier Coefficients, linearity of Lebesgue integrals
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Lp(D) convergence lemma statement

Lemma
Let D ⊂ Rn be a bounded, measurable subset of Rn, and let
f : D → R be a measurable function for which 0 < f ≤ 1 on D.
Fix 1 ≤ p <∞. Choose {φn}∞n=1 mutually orthogonal on D w.r.t.
the weight function 1

f . Define the Fourier Coefficients and
partial sums as before, and suppose the Fourier Expansion of
f =

∑∞
n=1 cnφn exists.
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Lp(D) : Proof in f ≤ 1 case

By Integral Cauchy-Schwarz,

∫
D
|f−sN |2 ·

1
f

dµ
∫

D
|f−sN |2p−2 ·1

f
dµ ≥

(∫
D
|f − sN |p ·

1
f

dµ
)2

.

(6.5)
LHS approaches 0 by proof of Parseval Identity; second LHS
integral controlled due to boundedness of functions and set D
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Lp(D) : Proof in f ≤ 1 case (continued)

Since f ≤ 1 on D,(∫
D
|f − sN |p ·

1
f

dµ
)2

≥
(∫

D
|f − sN |pdµ

)2

≥ 0, (6.6)

so sN → f in Lp(D) by Squeeze Theorem.



Outline Introduction Basic Results and Background Proof of Integral Cauchy-Schwarz Inequality Proof of Parseval’s Identity Lp behavior Future Work Acknowledgments

Lp(D) : Proof of General Case

Suppose f ≤ M on D, let g := f
M .

Use special case on g
The Fourier Coefficients of f are those of g scaled by factor
of M
Linearity of Lebesgue Integrals yields general case
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Next Steps

Results on rate of convergence

Dissect other well-known integral identities
Plancherel’s Identity doesn’t work
Use methodology of proof to prove geometric and
convolution-type inequalities
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