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@ Studied known proofs of Parseval’s Identity

@ Modified and generalized proof

@ New proof of Integral Cauchy-Schwarz Inequality
@ Searched for further convergence results
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Main Results

Theorem (Integral Cauchy-Schwarz)

Let E C R" be a bounded and measurable set, and let
g,h: E — R be bounded and measurable functions. Then

(/Egzd,u> ( /E h2du> > < /E ghdu>2. (2.1)
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Main Results (continued)

Theorem (Parseval’s Identity on Positive Functions)

Let D C R" be a bounded and measurable set, letf : D — R be
bounded, positive, and measurable on D, and let ¢, : D — R be
a collection of functions which are mutually orthogonal on D
with respect to 17 for all n € N*. Let the Fourier coefficients c,
be defined as

d
n = fDﬁ;’ iy (2.2)
Jp Fdp
and suppose the Fourier Expansion of f =7 | Ch¢pn eXists.

Then

0 2
fdu = c2/¢"d. 2.3
/Du ;anu (2.3)
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Main Results (continued)

Theorem (Parseval’s Identity)

Let f : E — R be bounded and measurable, and let the sets D;
be bounded, measurable, and mutually disjoint such that

E = Ux,D;. Assume that on each D;, f carries a unique sign
(is positive, negative, or zero) and has Fourier Coefficients
denoted by

_ Jp $ndu

¢% 2 (2.4)

in -

)

for each i € N, and suppose the Four/er Expansion of
f=3"121Cinpn exists. Then

/fdu ZZC,,,/ Vi (2.5)

i=1 n=1
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Main Results (continued)

Theorem (LP convergence)

Let D C R" be a bounded, measurable subset of R", and let

f: D — R be a measurable function for which0 < f <1 on D.
Fix 1 < p < oco. Choose {¢n}72  mutually orthogonal on D w.r.t.
the weight function 17 Define the Fourier Coefficients and
partial sums as before, and suppose the Fourier Expansion of
f =371 Cnpn exists. Then sy — f in LP(D).
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Our Measure Space

@ L: the Lebesgue measure on R"
@ M: the Lebesgue-measurable subsets of R"
@ Our measure space: (R", M, L)

@ Can also consider (D, M N'P(D), L) fora D C R"
measurable
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Mutual Orthogonality

Definition (Mutual Orthogonality)

A family of [finite or countably many] functions {¢,} is said to
be mutually orthogonal with respect to a function g on a
measurable set D if [, ¢m¢pngdp = 0 whenever m # n.

We use positive weight functions of the form 1.
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LP spaces

Definition (L° space)

Let 1 < p < oo. A function f is in LP(D) for a measurable
D c R"if

1
D
Fllupoy == ( /D rprdu) <o, (3.1)

in which case we say the LP-norm of f is [|f|[.»(py.

Definition (LP convergence)

Let 1 < p < 0. A sequence of functions f, : D — R converges
in L to afunction f: D — R if

”fn_fHLP(D) — 0. (32)

as n — oo.
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Integral Cauchy-Schwarz

Theorem (Integral Cauchy-Schwarz)

Let E C R" be a bounded and measurable set, and let
g,h: E — R be bounded and measurable functions. Then

(/Egzd,u> ( /E h2du> > < /E ghdu>2. (4.1)
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Mean-Square Minimization Lemma

Lemma (Mean-Square Minimization)

Let D C R" be a bounded and measurable set, and let
f,¢1 : D — R be bounded and measurable functions, where f
only takes positive values in D. Then

</ fdp) (/ 1 du) > </D¢1du>2. (4.2)/
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Construction of Orthogonal Family

@ Fixf,¢p1:D—R
@ Construct a mutually orthogonal family {¢n} w.r.t. 17 onD
@ Can truncate after finitely many functions

In particular, Vi # j,

1
[ o0y jan=0 43)
D
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Fourier Coefficients

Define the following:

¢y = Jond (4.4)
¢ndu
SN = ch¢n (4.5)

If {¢n} is finite we can truncate the sums and obtain an
eventually constant sequence.
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Mean-Square Deviation

The proof of the lemma is motivated by minimizing

/D (7 sw)P - 1dn (4.6)

Expand and re-complete the square:

/fdu Zch/¢ndu+Zc,,/ ¢”du

N
¢7,27 fD¢n fD¢ndﬂ)
;/D fdu< ) /fd ) (4.7)
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Mean-Square Deviation (continued)

Chose values of ¢, to minimize this expression, so in fact

nd
/D(f—sN - /fdu fD¢ d“) . (48)
n=1 H

The left-hand side of (5.3) is nonnegatlve, o]

/ fdu > M. (4.9)
dM
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Mean-Square Deviation (continued)

f positive, all terms of (4.9) nonnegative, so

Multiply across:

() () = (o)

(4.10)

(4.11)
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Nonzero Cauchy-Schwarz

Lemma (Nonzero Cauchy-Schwarz)

Let D Cc R"” be a bounded and measurable set, and let
g,h: D — R\ {0} be bounded and measurable functions. Then

</992du> < /D hzdu) > ( /D ghdu)z. (4.12)
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Change of Variables

</ fdu> (/ ¢1du> > </D¢1du>2. (4.13)

Use the bijective change of variables f = g2, 1 = ghon D.

Obtain
</D£12du> </Dh2dﬂ) . (/Dghdu>2, o

remarking f is positive on D.
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Integral Cauchy-Schwarz

Theorem (Integral Cauchy-Schwarz)

Let E C R" be a bounded and measurable set, and let
g,h: E — R be bounded and measurable functions. Then

</592du> </Eh2du) > (/Eghdu>2, T
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Filling in the Holes

Extend integral domains to zeros of g and h. Fix D:

D = {xeE (9(x) # 0)A(h(x) # 0)} (4.16)
E\D = {xe E:(g9(x) = 0)Vv (h(x) = 0)} (4.17)
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Filling in the Holes (continued)

Notice gh = 0on E\ D, so

</092du> </Dh2du> > (/Eghdﬂ>2. @18)

Result follows after realizing [z g?du > [, g?dp and
fEhzd,u > thzd,u. 0
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Parseval’s Identity on Positive Functions

Theorem (Parseval’s Identity on Positive Functions)

Let D C R" be a bounded and measurable set, letf : D — R be
bounded, positive, and measurable on D, and let ¢, : D — R be
a collection of functions which are mutually orthogonal on D
with respect to 17 for all n € N*. Let the Fourier coefficients c,
be defined as

énd
n = fD(; sy (5.1)
Jp Fdu
and suppose the Fourier Expansion of f =7 | Ch¢pn eXists.

Then

0 2
fdu = c2/¢"d. 5.2
/Du ;anu (52)
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Outline of Proof

By taking the limit in
N 2
1 dndp
/(f— sn)? - 5du = / fap — ZW,;) (5.3)
b D n=1 Jp Tndﬂ
we know this inequality is an equality:

/ fdu > Z fD¢”d“ : (5.4)

We know f’s Fourier Expansion exists and isf = Y074 Cnn.
Take N — oo in (5.4) and substitute the Fourier Coefficients to
complete the proof. O
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Generalizing to Non-signed Functions

Theorem (Parseval’s Identity)

Letf: E — R be bounded and measurable, and let the sets D;
be bounded, measurable, and mutually disjoint such that
E = U,D;. Assume that on each D;, f carries a unique sign
(is positive, negative, or zero) and has Fourier Coefficients
denoted by
. J p, Pndp
S

p, FAn

foreachi € Nt. Then

/Efdﬂ — ZZC,T{”/D ;;”du (5.6)

i=1 n=1
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Countable Additivity of Integration

Lemma (Countable Additivity of Integration)

Let f be a measurable function over the measurable set E. Let
{Em}p_4 be a disjoint, countable collection of measurable
subsets of E whose union is E. Then

flp = fdip. 5.7
/Eu ;Emu (5.7)
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Generalizing Proof to Non-signed Functions

Denote the following:
E. = {xe E,f(x) > 0}
E_ = {xec E,f(x) < 0}
Ey == {xe€ E,f(x) = 0}

These sets are measurable and disjoint, and
E =E UE UE,.

(5.8)

(5.9)
(5.10)
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Generalizing Proof to Non-signed Functions (continued)

By use of (5.7),

/fdu :/ fd,u—l—/ fdu (5.11)
E E, E

Applying (5.2) to f on E; and to —f on E_ completes the proof.
O



The LP space

Suppose 1 < p < .

Definition (LP space)
A function f is in LP(D) for a measurable D C R” if

P
Fllupoy = ( /D If\pdu> . (6.1)

in which case we say the LP-norm of f is || f|[.»(py.




Convergence in LP

Definition (L° convergence)

We say that a sequence of functions f, : D — R converges in
LP to a function f : D — R if

||fa — fllp(py — O. (6.2)

as n — oco. Equivalently,

li f, — f|Pd %—0 6.3
i ([ 1= tpcu)” = (6.3




Result: L° convergence of Fourier Series

Theorem (LP convergence)

Let D ¢ R" be a bounded, measurable subset of R", and let
f: D — R be a bounded, measurable function. Fix 1 < p < cc.
Choose {¢n}3° ; mutually orthogonal on D w.r.t. the weight
function ‘7 Define the Fourier Coefficients and partial sums as
before, and suppose the Fourier Expansion of f =377 ; Ca¢n
exists. Then sy — f in LP(D).
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Proof Outline

/D(f— sn)? - 1?du (6.4)

@ Special case: f < 1

@ Use Integral Cauchy-Schwarz and Squeeze Theorem

@ General case, f <M

@ Scale Fourier Coefficients, linearity of Lebesgue integrals



LP(D) convergence lemma statement

Lemma

Let D C R" be a bounded, measurable subset of R", and let

f: D — R be a measurable function for which0 < f <1 on D.
Fix 1 < p < co. Choose {¢n}>° 1 mutually orthogonal on D w.r.t.
the weight function }. Define the Fourier Coefficients and
partial sums as before, and suppose the Fourier Expansion of
f =721 Cnon exists.




LP(D) : Proofin f < 1 case

By Integral Cauchy-Schwarz,

1 1 1 2

[ 1r=suP -yt [ [1-sn2 2y > (/ |f—sNrp~fdu) .
D D D

(6.5)

LHS approaches 0 by proof of Parseval Identity; second LHS
integral controlled due to boundedness of functions and set D



LP(D) : Proof in f < 1 case (continued)

Since f <1on D,

1 2 2
(/D|f—sNrP-fcm) z(/Dv—sNrpdu) >0, (66)

so sy — fin LP(D) by Squeeze Theorem.
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LP(D) : Proof of General Case

@ Suppose f < Mon D, let g := ;.
@ Use special case on g

@ The Fourier Coefficients of f are those of g scaled by factor
of M

@ Linearity of Lebesgue Integrals yields general case
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@ Results on rate of convergence
@ Dissect other well-known integral identities
@ Plancherel’s Identity doesn’t work

@ Use methodology of proof to prove geometric and
convolution-type inequalities
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