Recasting the Proof of Parseval's Equation

Joshua M. Siktar, Carnegie Mellon University

2019 Joint Mathematics Meetings

Inequalities and Their Applications

jsiktar@andrew.cmu.edu

January 17, 2019

Introduction, Motivations, Goals

- Introduction, Motivations, Goals
- Prerequisite Measure Theory

- Introduction, Motivations, Goals
- Prerequisite Measure Theory
- Proofs of Technical Lemmas

- Introduction, Motivations, Goals
- Prerequisite Measure Theory
- Proofs of Technical Lemmas
- Proof of Integral Cauchy-Schwarz Inequality

- Introduction, Motivations, Goals
- Prerequisite Measure Theory
- Proofs of Technical Lemmas
- Proof of Integral Cauchy-Schwarz Inequality
- Transition to Parseval's Equation

- Introduction, Motivations, Goals
- Prerequisite Measure Theory
- Proofs of Technical Lemmas
- Proof of Integral Cauchy-Schwarz Inequality
- Transition to Parseval's Equation
- Future Work

Studied known proofs of Parseval's Equation

- Studied known proofs of Parseval's Equation
- Modified and generalized proof

- Studied known proofs of Parseval's Equation
- Modified and generalized proof
- New proof of Integral Cauchy-Schwarz Inequality

- Studied known proofs of Parseval's Equation
- Modified and generalized proof
- New proof of Integral Cauchy-Schwarz Inequality
- Bridge between PDEs and measure theory

Main Results

Outline

Theorem (Integral Cauchy-Schwarz)

Let $E \subset \mathbb{R}$ be a bounded and measurable set, and let $g, h : E \to \mathbb{R}$ be bounded and measurable functions. Then

$$\left(\int_{E} g^{2} d\mu\right) \left(\int_{E} h^{2} d\mu\right) \geq \left(\int_{E} gh d\mu\right)^{2}.$$
 (2.1)

Main Results (continued)

Outline

Theorem (Parseval's Equation on Positive Functions)

Let $D \subset \mathbb{R}$ be a bounded and measurable set, let $f: D \to \mathbb{R}$ be bounded, positive, and measurable on D, and let $\phi_n: D \to \mathbb{R}$ be a collection of functions which are mutually orthogonal on D with respect to $\frac{1}{f}$ for all $n \in \mathbb{N}^+$. Let the Fourier coefficients c_n be defined as

$$c_n := \frac{\int_D \phi_n d\mu}{\int_D \frac{\phi_n^2}{f} d\mu}, \qquad (2.2)$$

Proof of Parseva

Then

$$\int_{D} f d\mu = \sum_{n=1}^{\infty} c_n^2 \int_{D} \frac{\phi_n^2}{f} d\mu.$$
 (2.3)

Let $f: E \to \mathbb{R}$ be bounded and measurable, and let the sets D_i be bounded, measurable, and mutually disjoint such that $E = \bigcup_{i=1}^{\infty} D_i$. Assume that on each D_i , f carries a unique sign (is positive, negative, or zero) and has Fourier Coefficients denoted by

$$c_{i,n} := \frac{\int_{D_i} \phi_n d\mu}{\int_{D_i} \frac{\phi_n^2}{f} d\mu}$$
 (2.4)

Proof of Parseva

for each $i \in \mathbb{N}^+$. Then

$$\int_{E} f d\mu = \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} c_{i,n}^{2} \int_{D_{i}} \frac{\phi_{i,n}^{2}}{f} d\mu.$$
 (2.5)

Measurability

Definition (Measurable Set in \mathbb{R})

A set $E \subset \mathbb{R}$ is **measurable** with respect to an outer measure μ^* if for all $A \subset \mathbb{R}$,

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^C). \tag{3.1}$$

Definition (Measurable Function in \mathbb{R})

Let $E \subset \mathbb{R}$ be a measurable set. A function $f: E \to \overline{\mathbb{R}}$ is measurable if

$$\{x \in \mathbb{R} : f(x) = c\} \tag{3.2}$$

is a measurable set $\forall c \in \mathbb{R}$.

Our Measure Space

- ullet \mathcal{L} : the Lebesgue measure on $\mathbb R$
- ullet \mathcal{M} : the Lebesgue-measurable subsets of $\mathbb R$
- Our measure space: $(\mathbb{R}, \mathcal{M}, \mathcal{L})$

Countable Additivity of Integration

Lemma (Countable Additivity of Integration)

Let f be a measurable function over the measurable set E. Let $\{E_n\}_{n=1}^{\infty}$ be a disjoint, countable collection of measurable subsets of E whose union is E. Then

$$\int_{E} f d\mu = \sum_{n=1}^{\infty} \int_{E_{n}} f d\mu. \tag{3.3}$$

Proof of Parseva

Other Definitions (continued)

Definition (Eventually Constant)

A sequence $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}^n$ is said to be **eventually constant** if $\exists m \in \mathbb{N}^+$ such that $x_m = x_k$ for all k > m.

Definition (Mutual Orthogonality)

A family of [finite or countably many] functions $\{\phi_n\}$ is said to be **mutually orthogonal** with respect to a function g on a measurable set D if $\int_D \phi_m \phi_n g d\mu = 0$ whenever $m \neq n$.

Proof of Parseva

Integral Cauchy-Schwarz

Theorem (Integral Cauchy-Schwarz)

Let $E \subset \mathbb{R}$ be a bounded and measurable set, and let $g,h:E\to\mathbb{R}$ be bounded and measurable functions. Then

$$\left(\int_{E} g^{2} d\mu\right) \left(\int_{E} h^{2} d\mu\right) \geq \left(\int_{E} ghd\mu\right)^{2}. \tag{4.1}$$

Mean-Square Minimization Lemma

Lemma (Mean-Square Minimization)

Let $D \subset \mathbb{R}$ be a bounded and measurable set, and let $f, \phi_1: D \to \mathbb{R}$ be bounded and measurable functions, where f only takes positive values in D. Then

$$\left(\int_{D} f d\mu\right) \left(\int_{D} \frac{\phi_{1}^{2}}{f} d\mu\right) \geq \left(\int_{D} \phi_{1} d\mu\right)^{2}. \tag{4.2}$$

Construction of Orthogonal Family

- Fix $f, \phi_1: D \to \mathbb{R}$
- Construct a mutually orthogonal family $\{\phi_n\}_{n=1}^{\infty}$ w.r.t. $\frac{1}{f}$
- Can truncate after finitely many functions

In particular, $\forall i \neq j$,

$$\int_{D} \phi_{i} \phi_{j} \cdot \frac{1}{f} d\mu = 0 \tag{4.3}$$

Proof of Parseva

Fourier Coefficients

Define the following:

$$c_n := \frac{\int_D \phi_n d\mu}{\int_D \frac{\phi_n^2}{f} d\mu} \tag{4.4}$$

$$s_N := \sum_{n=1}^N c_n \phi_n \tag{4.5}$$

If $\{\phi_n\}$ is finite we can truncate the sums and obtain an eventually constant sequence.

Mean-Square Deviation

The proof of the lemma is motivated by minimizing

$$\int_{D} (f - s_N)^2 \cdot \frac{1}{f} d\mu \tag{4.6}$$

Expand (4.6) and re-complete the square:

$$\int_{D} f d\mu - 2 \sum_{n=1}^{N} c_{n} \int_{D} \phi_{n} d\mu + \sum_{n=1}^{N} c_{n}^{2} \int_{D} \frac{\phi_{n}^{2}}{f} d\mu =$$

$$\sum_{n=1}^{N} \int_{D} \frac{\phi_{n}^{2}}{f} d\mu \left(c_{n} - \frac{\int_{D} \phi_{n} d\mu}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu} \right)^{2} + \int_{D} f d\mu - \sum_{n=1}^{N} \frac{\left(\int_{D} \phi_{n} d\mu \right)^{2}}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu}. (4.7)$$

Mean-Square Deviation (continued)

Chose values of c_n to minimize this expression, so in fact

$$\min_{K\in\mathbb{N}^+} \int_D (f-s_K)^2 \cdot \frac{1}{f} d\mu = \int_D f d\mu - \sum_{n=1}^N \frac{\left(\int_D \phi_n d\mu\right)^2}{\int_D \frac{\phi_n^2}{f} d\mu}.$$
 (4.8)

The left-hand side of (4.8) is nonnegative, so

$$\int_{D} f d\mu \geq \sum_{n=1}^{N} \frac{\left(\int_{D} \phi_{n} d\mu\right)^{2}}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu}.$$
 (4.9)

Proof of Parseva

Mean-Square Deviation (continued)

f positive, all terms of (4.9) nonnegative, so

$$\int_{D} f d\mu \geq \frac{\left(\int_{D} \phi_{1} d\mu\right)^{2}}{\int_{D} \frac{\phi_{1}^{2}}{f} d\mu}.$$
 (4.10)

Proof of Parseva

Multiply across:

$$\left(\int_{D} f d\mu\right) \left(\int_{D} \frac{\phi_{1}^{2}}{f} d\mu\right) \geq \left(\int_{D} \phi_{1} d\mu\right)^{2}. \tag{4.11}$$

Nonzero Cauchy-Schwarz

Lemma (Nonzero Cauchy-Schwarz)

Let $D \subset \mathbb{R}$ be a bounded and measurable set, and let $g, h: D \to \mathbb{R} \setminus \{0\}$ be bounded and measurable functions. Then

$$\left(\int_{D} g^{2} d\mu\right) \left(\int_{D} h^{2} d\mu\right) \geq \left(\int_{D} gh d\mu\right)^{2}.$$
 (4.12)

Change of Variables

$$\left(\int_{D} f d\mu\right) \left(\int_{D} \frac{\phi_{1}^{2}}{f} d\mu\right) \geq \left(\int_{D} \phi_{1} d\mu\right)^{2}. \tag{4.13}$$

Proof of Parseva

Use the bijective change of variables $f=g^2,\,\phi_1=gh$ on D. Obtain

$$\left(\int_{D} g^{2} d\mu\right) \left(\int_{D} h^{2} d\mu\right) \geq \left(\int_{D} gh d\mu\right)^{2}, \tag{4.14}$$

remarking f is positive on D.

Theorem (Integral Cauchy-Schwarz)

Let $E \subset \mathbb{R}$ be a bounded and measurable set, and let $g, h : E \to \mathbb{R}$ be bounded and measurable functions. Then

$$\left(\int_{E} g^{2} d\mu\right) \left(\int_{E} h^{2} d\mu\right) \geq \left(\int_{E} gh d\mu\right)^{2}.$$
 (4.15)

Filling in the Holes

Extend integrals to zeros of *g* and *h*. Fix *D*:

$$D := \{x \in E, (g(x) \neq 0) \land (h(x) \neq 0)\}$$
 (4.16)

$$E \setminus D = \{x \in E : (g(x) = 0) \lor (h(x) = 0)\}$$
 (4.17)

Filling in the Holes (continued)

Notice gh = 0 on $E \setminus D$, so

$$\left(\int_{D} g^{2} d\mu\right) \left(\int_{D} h^{2} d\mu\right) \geq \left(\int_{E} ghd\mu\right)^{2}. \tag{4.18}$$

Result follows after realizing $\int_E g^2 d\mu \geq \int_D g^2 d\mu$ and $\int_E h^2 d\mu \geq \int_D h^2 d\mu$. \square

Parseval's Equation on Positive Functions

Theorem (Parseval's Equation on Positive Functions)

Let $D \subset \mathbb{R}$ be a bounded and measurable set, let $f: D \to \mathbb{R}$ be bounded, positive, and measurable on D, and let $\phi_n: D \to \mathbb{R}$ be a collection of functions which are mutually orthogonal on D with respect to $\frac{1}{f}$ for all $n \in \mathbb{N}^+$. Let the Fourier coefficients c_n be defined as

$$c_n := \frac{\int_D \phi_n d\mu}{\int_D \frac{\phi_n^2}{f} d\mu}, \tag{5.1}$$

Proof of Parseva

Then

$$\sum_{n=1}^{\infty} c_n^2 \int_D \frac{\phi_n^2}{f} d\mu = \int_D f d\mu.$$
 (5.2)

Outline of Proof

Recall we proved

$$\int_{D} f d\mu \geq \sum_{n=1}^{N} \frac{\left(\int_{D} \phi_{n} d\mu\right)^{2}}{\int_{D} \frac{\phi_{n}^{2}}{f} d\mu}.$$
 (5.3)

and in fact this is equality by taking the limit as $N \to \infty$ in (4.8). Use that f's Fourier Expansion exists, so $f = \sum_{n=1}^{\infty} c_n \phi_n$. Take $N \to \infty$ in (5.3) and substitute (5.1) to complete the proof. \square

Theorem (Parseval's Equation)

Let $f: E \to \mathbb{R}$ be bounded and measurable, and let the sets D_i be bounded, measurable, and mutually disjoint such that $E = \bigcup_{i=1}^{\infty} D_i$. Assume that on each D_i , f carries a unique sign (is positive, negative, or zero) and has Fourier Coefficients denoted by

$$c_{i,n} := \frac{\int_{D_i} \phi_n d\mu}{\int_{D_i} \frac{\phi_n^2}{f} d\mu}$$
 (5.4)

for each $i \in \mathbb{N}^+$. Then

$$\int_{E} f d\mu = \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} c_{i,n}^{2} \int_{D_{i}} \frac{\phi_{i,n}^{2}}{f} d\mu$$
 (5.5)

Generalizing Proof to Non-signed Functions

Denote the following:

$$E_+ := \{x \in E, f(x) > 0\}$$
 (5.6)

$$E_{-} := \{x \in E, f(x) < 0\} \tag{5.7}$$

$$E_0 := \{x \in E, f(x) = 0\}$$
 (5.8)

These sets are measurable and disjoint, and $E = E_+ \cup E_- \cup E_0$.

Generalizing Proof to Non-signed Functions (continued)

By use of (3.3),

$$\int_{E} f d\mu = \int_{E_{+}} f d\mu + \int_{E_{-}} f d\mu \qquad (5.9)$$

Proof of Parseva

Applying (5.2) to f on E_+ and to -f on E_- completes the proof.

Next Steps

• Generalize to the Lebesgue Measure in \mathbb{R}^n

Next Steps

- Generalize to the Lebesgue Measure in \mathbb{R}^n
- Generalize to other measures such as the spherical measure

Next Steps

- Generalize to the Lebesgue Measure in \mathbb{R}^n
- Generalize to other measures such as the spherical measure
- Use methodology of proof to prove convolution inequalities

- T.M. Apostol, Another elementary proof of Euler's formula for $\zeta(2n)$, Amer. math. Monthly, (1973), 425-431.
- R. Baillie, Fun with Fourier Series, https://arxiv.org/pdf/0806.0150.pdf
- Z. Liu, Gauss Summation And Ramanujan Type Series for $\frac{1}{\pi}$, https://arxiv.org/pdf/1805.06568.pdf.
- C. Lupu, D. Orr, Approximations for Apery's Constant $\zeta(3)$ and Rational Series Representations Involving $\zeta(2n)$, https://arxiv.org/pdf/1605.09541.pdf.

- F. Riesz, B. Sz.-Nagy, Functional Analysis, New York, NY:Dover, 1990.
- H. Royden, P. Fitzpatrick, Real Analysis, New York, NY:Pearson, 2010.
- J. Siktar, Piecewise Telescoping and Applications to Fourier Series, https://www.awesomemath.org/ wp-pdf-files/math-reflections/mr-2017-04/ piecewise telescoping.pdf.
- H. Weinberger, A First Course in Partial Differential Equations with Complex Variables and Transform Methods, New York, NY:Dover, 1995.
- E.C. Zachmanoglou, D.W. Thoe, Introduction to Partial Differential Equations with Applications, Dover Publications, 1986.

Thank You

- Special thanks to...
- Carnegie Mellon University Department of Mathematical Sciences
- Professor Shlomo Ta'asan and Professor Jack Schaeffer
- Akanksha Kartik