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Problem statement

Our family of nonlocal optimal control problems is to find

F(uδ,s, gδ,s) = min
u∈Hs,p,δ

0 (Ω−δ;Rn),
g∈Zad

{ˆ
Ω
F (x, u(x))dx+

ˆ
Ω

Λ(x)|g(x)|p
′
dx

}

over pairs (u, g) ∈ Hs,p,δ
0 (Ω−δ;Rn) × Zad that satisfy

u ∈ argminv∈Hs,p,δ
0 (Ω;Rn)W

δ,s
g (v)

Here Wδ,s
g (·) is either a nonlocal p-Laplacian energy or a general nonlocal

quasiconvex energy!
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Overarching ideas Nonlocality

Nonlocal models

Nonlocal models are those that use integration to capture physical
behaviors in lieu of differentiation
Lets models assume far less regularity than PDE models
Typical case study: peridynamics models for crack propagation

Prototype for nonlocal gradient (where u : Ωδ → Rn)

Gρu(x) :=
ˆ

Ω
ρ(x− y)u(x) − u(y)

|x− y|
⊗ x− y

|x− y|
dy,

where ρ : Ω → R is a kernel with a singularity at the origin.



Overarching ideas Nonlocality

The Fractional Riesz Gradients

Typical definition of Riesz s-fractional gradient:

Ω := Rn, ρ(x) := cn,s

|x|n+s−1 ,

which produces a gradient operator

Dsu(x) := cn,s P.V.

ˆ
Rn

u(x) − u(y)
|x− y|n+s

⊗ x− y

|x− y|
dy.

However, unbounded domains are not suitable for solid mechanics. A suitable
alternative is this truncated fractional gradient for δ > 0, s ∈ (0, 1)

Ds
δu(x) := cn,s P.V.

ˆ
B(x,δ)

u(x) − u(y)
|x− y|

⊗ x− y

|x− y|
wδ(x− y)

|x− y|n+s−1 dy.



Overarching ideas Weaker notions of convexity

Polyconvexity

Definition (Polyconvex energy)

An energy W : Ω × Rn × Rn2 → R is said to be polyconvex if it is of the form

W (x, u,A) = W (x, u,A, cof(A),det(A))

and is jointly convex in A, cof(A), det(A).

Physical motivation:
Dependence on cof(A) indicates explicit dependence on deformation of line
elements
Dependence on det(A) indicates explicit dependence on deformation of
volume elements

NOTE: Weak continuity of determinant of gradient utilized to prove existence of
minimizers!



Overarching ideas Weaker notions of convexity

Mooney-Rivlin materials

Example

The polyconvex family of Compressible Mooney-Rivlin materials are functions
of the form

f(A) := a|A|2+b|cof(A)|2+T (det(A))

where a, b > 0 and T : R → R is the map defined by

T (d) :=
{
αd2 − β ln(d), if d > 0
+∞, if d ≤ 0

for some fixed α, β > 0.



Overarching ideas Weaker notions of convexity

Quasiconvexity

Definition (Quasiconvex energy)

An energy W : Ω ×Rn ×Rn2 → R is said to be quasiconvex if for a.e. x ∈ Ω, all
u ∈ Rn, and A ∈ Rn2 the following inequality holds for all ψ ∈ W 1,∞

0 ((0, 1)n;Rn):

W (x, u,A) ≤
 

(0,1)n

W (x, u,A+ ∇ψ(y))dy.

Physical motivation:
An affine deformation has a smaller energy than the internally distorted
deformation (distorted by ψ)

NOTE: In the classical context, Morrey’s Theorem gives lower semi-continuity of
energies, which in turn gives existence of minimizers



Overarching ideas Weaker notions of convexity

Novelties

The main contributions of this work are:
Studying control problems where underlying function space has two nonlocal
parameters (s fractional, δ horizon)
Well-posedness of control problems with a convex energy constraint
(minimizers are unique)
Considering a control problem with an ill-posed state constraint (minimizers
may not be unique)
Relating nonlocal control problems to local ones posed on Sobolev Spaces
(s → 1−)



Overarching ideas Notation

Kernels and nonlocal gradient

Kernels
Horizon parameter: δ > 0

wδ : Rn → [0,∞) is radial; i.e. wδ(x) = w̄δ(|x|) for some non-negative
w̄δ ∈ C∞

c ([0,∞)), with supp(w̄δ) ⊂ [0, δ).
There is a constant 0 < b0 < 1 such that w̄|[0,b0δ]= a0, where
a0 = maxr≥0 w̄δ(r).
w̄δ(r1) ≥ w̄δ(r2) whenever r1 ≤ r2.

Nonlocal gradient
Consider Ω ⊂ Rn bounded and open, Ω−δ := {x ∈ Ω | dist(x, ∂Ω) > δ},
Ωδ := Ω ∪ {x ∈ Rn | dist(x, ∂Ω) < δ}
Let u ∈ C∞

0 (Rn;Rn), and then the nonlocal gradient Ds
δu is defined as

Ds
δu(x) := cn,s

ˆ
B(x,δ)

u(x) − u(y)
|x− y|

⊗ x− y

|x− y|
wδ(x− y)

|x− y|n+s−1 dy



Overarching ideas Notation

Nonlocal function spaces

Let p ∈ [1,∞). Then Hs,p,δ(Ω;Rn) is defined as the closure of C∞
c (Rn;Rn)

under the norm

∥u∥Hs,p,δ(Ω;Rn) := ∥u∥Lp(Ωδ;Rn)+∥Ds
δu∥Lp(Ω;Rn2 ).

Zero nonlocal boundary data:

Hs,p,δ
0 (Ω−δ;Rn) := {u ∈ Hs,p,δ(Ω;Rn) | u = 0 on Ω \ Ω−δ}

Arbitrary nonlocal boundary data (for f ∈ Hs,p,δ(Ω;Rn)):

Hs,p,δ
f (Ω;Rn) := f +Hs,p,δ

0 (Ω−δ;Rn)

The definition of nonlocal gradient is extended to functions in these spaces by
density
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Preliminaries Functional analytic framework

Preliminaries

Proposition (Nonlocal Poincaré, Cueto/Kreisbeck/Schönberger 2023)
Let s ∈ [0, 1], p ∈ (1,∞), Ω ⊂ Rn be open and bounded. Then there exists a
constant C > 0 depending only on Ω, δ, and p such that for all
u ∈ Hs,p,δ

0 (Ω;Rn), we have

∥u∥Lp(Ω;Rn) ≤ C∥Ds
δu∥Lp(Ω;Rn2 ).

Proposition (Compact Embedding, Bellido/Cueto/Mora-Corral 2023)

Let s ∈ (0, 1), p ∈ (1,∞), f ∈ Hs,p,δ(Ω;Rn), and suppose
{uj}∞

j=1 ⊂ Hs,p,δ
f (Ω;Rn) is a sequence such that uj ⇀ u weakly in

Hs,p,δ(Ω;Rn). Then uj → u strongly in Lq(Ω;Rn), where q satisfies:
q ∈ [1, p∗

s) if sp < n;
q ∈ [1,∞) if sp = n;
q ∈ [1,∞] if sp > n,

where p∗
s := np

n−sp . In addition, we have that u ∈ Hs,p,δ
f (Ω;Rn).



Preliminaries Functional analytic framework

Convergences in varying fractional exponent

Proposition (Cueto/Kreisbeck/Schönberger 2023)

Let p ∈ (1,∞) with Ω ⊂ Rn open and bounded. Suppose {sj}∞
j=1 ⊂ [0, 1]

converges to 1 where uj ∈ H
sj ,p,δ
0 (Ω;Rn) is a sequence such that

sup
j∈N+

∥Dsj

δ uj∥Lp(Ω;Rn) < ∞.

Then there exists u ∈ W 1,p
0 (Ω;Rn) so that, up to a non-relabeled sub-sequence,

uj → u in Lp(Ωδ;Rn) and Dsj

δ uj ⇀ ∇u weakly in Lp(Ω;Rn2).

Proposition (Cueto/Kreisbeck/Schönberger 2023)

Let p ∈ (1,∞) and let {sj}∞
j=1 ⊂ [0, 1] be a sequence converging to 1. Suppose

that u ∈ W 1,p
0 (Ω;Rn). Then Dsj

δ u → ∇u strongly in Lp(Ω;Rn2) as j → ∞.
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Results for convex problem Notation

Nonlocal problem notation

Let ⟨·, ·⟩ denote the duality pairing between Lp(Ω;Rn) and Lp′(Ω;Rn), and ·
denote the Fröbenius inner product between matrices in Rn2

Non-homogeneous nonlocal p-Laplacian form:

Yδ,s(u, v) =
ˆ

Ω
a(x)|Ds

δu(x)|p−2Ds
δu(x) ·Ds

δv(x)dx,

where a ∈ L∞(Ω) is a strictly positive coefficient.
Weak form of constraint:{

Yδ,s(u, v) = ⟨gδ,s, v⟩, ∀v ∈ Hs,p,δ
0 (Ω;Rn)

u = 0, x ∈ Ωδ \ Ω

For this section only, the nonlocal energy density is

Wδ,s
g (u) := 1

p
Yδ,s(u, u) − ⟨g, u⟩



Results for convex problem Notation

Local problem notation

Local non-homogeneous p-Laplacian form:

Y0(u, v) =
ˆ

Ω
a(x)|∇u(x)|p−2∇u(x) · ∇v(x)dx

Weak form of constraint:{
Y0(u, v) = ⟨g, v⟩ ∀v ∈ W 1,p

0 (Ω;Rn)
u = 0, x ∈ ∂Ω

For this section only, the local energy density is

W loc
g (u) := 1

p
Y0(u, u) − ⟨g, u⟩



Results for convex problem Notation

Admissible classes

The admissible control space is Zad, a nonempty, closed, convex, and
bounded subset of Lp′(Ω;Rn), and it takes the form

Zad := {z ∈ Lp′
(Ω;Rn) | a(x) ⪯ z(x) ⪯ b(x) a.e. x ∈ Ω}

for some vector-valued functions a, b ∈ L∞(Ω;Rn).
Nonlocal admissible set:

Aδ
s := {(wδ,s, fδ,s) ∈ Hs,p,δ

0 (Ω;Rn) × Zad |

Yδ,s(wδ,s, vδ,s) = ⟨fδ,s, vδ,s⟩, ∀vδ,s ∈ Hs,p,δ
0 (Ω;Rn)}

Local admissible set:

Aloc := {(w, f) ∈ W 1,p
0 (Ω;Rn) × Zad |

Y0(w, v) = ⟨f, v⟩, ∀v ∈ W 1,p
0 (Ω;Rn)}



Results for convex problem Notation

Cost functional setup

The cost functional is of the form

F(u, g) :=
ˆ

Ω
F (x, u(x))dx+

ˆ
Ω

Λ(x)|g(x)|p
′
dx.

A special case is

F(u, g) := 1
p

∥u− udes∥p
Lp(Ω;Rn)+

λ

p′ ∥g∥p′

Lp′ (Ω;Rn),

where λ > 0 is a regularization parameter, and udes ∈ Lp(Ω;Rn) is a fixed desired
state.



Results for convex problem Notation

Cost functional assumptions

We assume that F : Ω × Rn → R satisfies:
For all v ∈ Rn the mapping x 7→ F (x, v) is measurable;
For all x ∈ Ω the mapping v 7→ F (x, v) is continuous and convex;
There exist constant c1 > 0 and l ∈ L1(Ω) for which

|F (x, v)| ≤ c1|v|p
∗
s +l(x)

for all x ∈ Ω and all v ∈ Rn, where p∗
s := np

n−sp .
We also assume that Λ ∈ L∞(Ω) is strictly positive function, i.e. there exists
γ > 0 such that Λ(x) ≥ γ for all x ∈ Ω.



Results for convex problem Well-posedness

Well-posedness results

Proposition (Well-posedness of state equation)

For any fixed gδ,s ∈ Zad, there is a unique weak solution uδ,s ∈ Hs,p,δ
0 (Ω;Rn) to

Yδ,s(uδ,s, vδ,s) = ⟨gδ,s, vδ,s⟩, ∀vδ,s ∈ Hs,p,δ(Ω;Rn)

satisfying a stability estimate

∥uδ,s∥Hs,p,δ(Ωδ;Rn) ≲ ∥gδ,s∥Lp′ (Ω;Rn)

with constant independent of s. In addition, the underlying solution mapping is
compact.

Theorem (Well-posedness of nonlocal control problem)

Let δ > 0, s ∈ (0, 1) be fixed. There exists a pair (uδ,s, gδ,s) ∈ Aδ
s solving the

nonlocal control problem. If F is strictly convex in the second argument, then this
solution is unique.



Results for convex problem Convergence results

Γ-convergence of convex energies

This result holds for quasiconvex energies with p-growth bounds, but also for
Wδ,s

g (u) := 1
p Yδ,s(u, u) − ⟨g, u⟩ and W loc

g (u) := 1
p Y0(u, u) − ⟨g, u⟩ for a g ∈ Zad

arbitrary.

Theorem (Cueto/Kreisbeck/Schönberger 2023)

Let δ > 0, g ∈ Zad be fixed. Then the family of functionals {Wδ,s
g }s<1 will

Γ-converge in the strong Lp(Ω;Rn) topology to W loc
g , which we will denote

Wδ,s
g

Γ, s→1−

−−−−−−→ W loc
g . In other words, we have the following:

1 If {us}s<1 ⊂ Lp(Ω;Rn) is a sequence such that us → u strongly in
Lp(Ω;Rn), then we have the lim-inf inequality

W loc
g (u) ≤ liminfs→1−Wδ,s

g (us).

2 If u ∈ Lp(Ω;Rn), then there exists a recovery sequence of
{us}s<1 ⊂ Lp(Ω;Rn) such that us → u strongly in Lp(Ω;Rn) and

W loc
g (u) ≥ limsups→1−Wδ,s

g (us).



Results for convex problem Convergence results

Convergence of minimizers

Lemma (Compactness)

Let δ > 0 be fixed, and let {(us, gs)}s<1 denote the solutions to our family of
convex nonlocal control problems. Then there exists a sequence {sj}∞

j=1 such that
sj → 1, and a pair (u, g) ∈ Aloc such that us → u strongly in Lp(Ω;Rn) and
gs ⇀ g weakly in Lp′(Ω;Rn), as s → 1−.

Theorem (Convergence of minimizers as s → 1−)

As s → 1−, we have that us → u strongly in Lp(Ω;Rn) and gs → g strongly in
Lp′(Ω;Rn). Moreover, we have the limit

lim
s→1−

F(us, gs) = F(u, g),

and (u, g) is the solution to the local control problem.

Strategy: compare the limit obtained by compactness to arbitrary test pairs
(u, g) ∈ Aloc, pick {us}s<1 with (us, g) ∈ As

δ as a recovery sequence



Results for convex problem Convergence results

Stronger convergence of optimal states

Theorem

Let {(us, gs)}s<1 be the solutions to the nonlocal control problem, while (u, g) is
the solution to the local control problem. Then we have that us → u converges
strongly in Hs,p,δ(Ω;Rn), i.e.

lim
s→1−

∥us − u∥Hs,p,δ(Ω;Rn) = 0.

NOTE: This result rests on the structure of our functional moreso than its
convexity!
Due to Γ-convergence:

lim
s→1−

Wδ,s
gs

(us) = W loc
g (u)



Results for convex problem Convergence results

Stronger convergence of optimal states: proof

Now due to us → u in Lp(Ω;Rn), gs → g in Lp′(Ω;Rn):

lim
s→1−

ˆ
Ω
a(x)|Ds

δus(x)|pdx = lim
s→1−

ˆ
Ω
us(x)gs(x) dx =

ˆ
Ω
a(x)|∇u(x)|pdx.

Since Ds
δus ⇀ ∇u weakly in Lp(Ω;Rn2) by compactness, this limit improves

convergence to Ds
δus → ∇u strongly in Lp(Ω;Rn2). By Triangle Inequality:

Yδ,s(us − u, us − u) =
ˆ

Ω
a(x)|Ds

δ(us − u)(x)|pdx ≤
ˆ

Ω
a(x)(|Ds

δus(x) − ∇u(x)|+|∇u(x) −Ds
δu(x)|)pdx ≲

ˆ
Ω
a(x)|Ds

δus(x) − ∇u(x)|pdx+
ˆ

Ω
a(x)|∇u(x) −Ds

δu(x)|pdx.

1st term goes to 0 due to convergence of optimal states, 2nd term goes to 0 due
to strong convergence of gradient operators
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Results for non-convex problem Existence of solutions

Growth bounds

We assume that W : Ω × R × Rn → R is a Carathéodory energy density satisfying
the bounds

c|A|p−C ≤ W (x, z,A) ≤ C(1 + |z|p+|A|p)

for a.e. x ∈ Ω, (z,A) ∈ R × Rn, and constants c, C > 0. Then we denote (for
u ∈ Hs,p,δ(Ω;Rn))

Wδ,s
0 (u) :=

ˆ
Ω
W (x, u(x), Ds

δu(x))dx

and
Wδ,s

g (u) :=
ˆ

Ω
W (x, u(x), Ds

δu(x))dx− ⟨g, u⟩



Results for non-convex problem Existence of solutions

Local energy

We also denote (for u ∈ W 1,p(Ω;Rn))

W loc
0 (u) :=

ˆ
Ω
W (x, u(x),∇u(x))dx

and
W loc

g (u) :=
ˆ

Ω
W (x, u(x),∇u(x))dx− ⟨g, u⟩



Results for non-convex problem Existence of solutions

Existence of minimizers for non-convex energy

Theorem (Cueto/Kreisbeck/Schönberger 2023)
Let s ∈ (0, 1), δ > 0, p ∈ (1,∞), Ω ⊂ Rn be open and bounded with |∂Ω−δ|= 0
and g ∈ Hs,p,δ(Ω;Rn). Suppose that W : Ω × R × Rn → R is a Carathéodory
energy density satisfying the bounds

c|A|p−C ≤ W (x, z,A) ≤ C(1 + |z|p+|A|p)

for a.e. x ∈ Ω, (z,A) ∈ R × Rn. If A 7→ W (x, z,A) is quasiconvex a.e. x ∈ Ω−δ

and all z ∈ R, then the energy Ws,δ
g defined by

Wδ,s
g (v) :=

ˆ
Ω
W (x, v(x), Ds

δv(x))dx−
ˆ

Ω
g(x) · v(x)dx

admits a minimizer uδ,s ∈ Hs,p,δ
g (Ω;Rn).

NOTE: our results do not require W to be differentiable



Results for non-convex problem Existence of solutions

Admissible sets

Nonlocal admissible set

Zδ
s := {(wδ,s, fδ,s) ∈ Hs,p,δ

0 (Ω;Rn) × Zad |

wδ,s ∈ argminvδ,s∈Hs,p,δ
0 (Ω;Rn)W

δ,s
fδ,s

[vδ,s]}

Local admissible set

Z loc := {(w, f) ∈ W 1,p
0 (Ω;Rn) × Zad |

w ∈ argminv∈W 1,p
0 (Ω;Rn)W

loc
f [v]}



Results for non-convex problem Existence of solutions

Lemmas for existence of minimizers

Lemma (Closure of Admissible Set)

Fix δ > 0 and s ∈ (0, 1). Suppose that {(uk, gk)}∞
k=1 ⊂ Zδ

s is a sequence such
that gk ⇀ g weakly in Lp′(Ω;Rn), and uk ⇀ u weakly in Hs,p,δ

0 (Ω;Rn). Then
the limiting pair (u, g) ∈ Zδ

s .

Lemma (Boundedness of Admissible States)

Denote the set

Uδ,s := {uδ,s ∈ Hs,p,δ
0 (Ω;Rn) | ∃gδ,s ∈ Zad, (uδ,s, gδ,s) ∈ Zδ

s }

as the collection of states which minimize the energy density for some admissible
control. This set is bounded in the Hs,p,δ(Ω;Rn) norm.

NOTE: This is analogous to a stability estimate for well-posed minimization
problems.



Results for non-convex problem Existence of solutions

Existence of solutions for non-convex optimal control problem

Theorem
For any fixed δ > 0 and s ∈ [0, 1], the optimal control problem with the
quasiconvex energy minimization constraint has a (not necessarily unique) solution
(uδ,s, gδ,s) ∈ Zδ

s .

Functional bounded from below due to boundedness lemma
Produce minimizing sequence {(uk, gk)}∞

k=1 ⊂ Zδ
s

Produce limit (uδ,s, gδ,s) via reflexivity, belongs to Zδ
s due to closedness

lemma
Use lower semi-continuity to conclude



Results for non-convex problem Convergence results

Γ-convergence of quasiconvex energies

Theorem (Cueto/Kreisbeck/Schönberger 2023)

Let δ > 0, g ∈ Zad be fixed. Then the family of functionals {Wδ,s
g }s<1 will

Γ-converge in the strong Lp(Ω;Rn) topology to W loc
g , which we will denote

Wδ,s
g

Γ, s→1−

−−−−−−→ W loc
g . In other words, we have the following:

1 If {us}s<1 ⊂ Lp(Ω;Rn) is a sequence such that us → u strongly in
Lp(Ω;Rn), then we have the lim-inf inequality

Wδ,s
g (u) ≤ liminfs→1−W loc

g (us).

2 If u ∈ Lp(Ω;Rn), then there exists a recovery sequence of
{us}s<1 ⊂ Lp(Ω;Rn) such that us → u strongly in Lp(Ω;Rn) and

W loc
g (u) ≥ limsups→1−Wδ,s

g (us).



Results for non-convex problem Convergence results

Convergence results as s → 1−

Let {(us, gs)}s<1 be a family of solutions for the non-convex control problem.

Lemma (Lim-inf inequality)

Then there exists a pair (u, g) ∈ Z loc such that

F(u, g) ≤ liminfs→1−F(us, gs)

and us → u strongly in Lp(Ω;Rn), gs ⇀ g weakly in Lp′(Ω;Rn)

Lemma (Relative Minimization)

In addition, for every g ∈ Zad, there exists a ũ ∈ W 1,p
0 (Ω;Rn) so that

(ũ, g) ∈ Z loc and
F(u, g) ≤ F(ũ, g).

Let g ∈ Zad be arbitrary and choose us ∈ Hs,p,δ
0 (Ω;Rn) so that (us, g) ∈ Zδ

s .
Then produce a limit ũ ∈ W 1,p

0 (Ω;Rn) through compactness, and (ũ, g) ∈ Z loc

The issue is that we can’t guarantee every local admissible state has a recovery
sequence of nonlocal admissible states converging to it! This is where lack of
uniqueness of minimizers for the energy is problematic!
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Closing remarks

Conjecture I

Conjecture (Asymptotic Compatibility)
Suppose {δk}∞

k=0 and {sk}∞
k=0 are sequences of parameters such that δk → 0+

and sk → 1− as k → ∞. If {(uk, gk)}∞
k=1 denotes the solution to our convex

nonlocal control problem with parameters δk and sk, and (u, g) denotes the
solution to our local control problem, then:

uk → u strongly in Lp(Ω;Rn)
gk → g strongly in Lp′(Ω;Rn)
limk→∞ F(uk, gk) = F(u, g)



Closing remarks

Conjecture II

Conjecture (Compliance Functional)

If Wδ,s
0 (u) :=

´
Ω W (x,Ds

δu(x))dx is a quasiconvex energy density for each
δ > 0, s ∈ (0, 1), let (ûs, ĝs) ∈ Zδ

s denote a solution to the nonlocal control
problem

(ûs, ĝs) ∈ argmin(us,gs)∈Zδ
s

ˆ
Ω
gs(x) · us(x)dx.

Then there exists a sub-sequence of indices {sk}∞
k=1 with sk → 1− and a pair

(û, ĝ) ∈ Z loc that solves the local control problem

(û, ĝ) ∈ argmin(u,g)∈Z loc

ˆ
Ω
g(x) · u(x)dx,

and we have the limit

lim
k→∞

ˆ
Ω
ĝsk

(x) · ûsk
(x)dx =

ˆ
Ω
ĝ(x) · û(x)dx.



Closing remarks

Summary

Accomplishments:
Well-posedness of a nonlocal control problem with a convex constraint
Existence of minimizers of a nonlocal control problem with a
quasi/polyconvex constraint
Convergence of minimizers for the nonlocal control problems with a convex
constraint
Weaker convergence properties in the limit for the nonlocal control problems
with a quasi/polyconvex constraint
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