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Problem Formulation

Problem statement

Find (uδ, gδ) ∈ X0 × Zad such that

I(uδ, gδ) = min
gδ∈L2,uδ∈X0

{ˆ
Ω
F (x , uδ(x))dx + λ

2

ˆ
Ω

Γ(x)|gδ(x)|2dx
}
,

subject to the strongly coupled system of equations

Lδuδ = gδ

δ ≥ 0 is the degree of non-locality (the horizon parameter in peridynamics);
gδ is a [vector-valued] external force;
uδ represents the [vector-valued] displacement.
Lδ is a non-local operator, exact formula to be given.
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Problem Formulation

Sample candidate integrand



Problem Formulation

Goals

Show existence and uniqueness of minimizers
Consider behavior as δ → 0+

Discretize via FEMs
Study simultaneous limit as δ, h→ 0+ (asymptotic compatibility)



Notation and Functional Setting

Bi-linear forms

Bi-linear form induces non-local state equation:

Bδ(u, v) :=
¨
Dδ

A(x , y)kδ(x − y)Du(x , y)
|x − y |

Dv(x , y)
|x − y | dxdy =

ˆ
Ω
g(x) · v(x)dx

A is positive, bounded, symmetric
kδ a kernel with suitable properties
Dδ := (Ω× Ωδ) ∪ (Ωδ × Ω), where Ωδ := Ω ∪ {x ∈ Rn, dist(x , ∂Ω) < δ}
Du is projected difference, Du(x , y) := (u(x)− u(y)) · x−y

|x−y |

Models arise in peridynamics, specifically the bond-based model



Notation and Functional Setting

Function spaces

Our function space is based on Bδ :

X (Ωδ;Rn) := {u|Ω∈ L2(Ω;Rn),Bδ(u, u) <∞}

Version with zero non-local boundary data:

X0(Ωδ;Rn) := {u ∈ X (Ωδ;Rn), u = 0 in Ωδ \ Ω}



Well-posedness

State equation is well-posed!

Proposition (Nonlocal Poincaré-Korn (Mengesha-Du 2014))
There exists a δ0 > 0 and a constant C(δ0) > 0 such that for all δ ∈ (0, δ0] and
u ∈ X0(Ωδ;Rn),

‖u‖2
L2(Ω;Rn) ≤ C(δ0)

ˆ
Ωδ

ˆ
Ωδ

kδ(x − y) |Du(x , y)|2
|x − y |2 dxdy .

NOTE: The projected difference vanishes under infinitesimal rigid displacements.

Theorem (Existence and Uniqueness for State Equation)

For any gδ ∈ L2, there exists a unique uδ ∈ X0 such that the state system

Bδ(uδ,wδ) = 〈gδ,wδ〉

is satisfied for all wδ ∈ X0. Furthermore, we have the stability estimate

‖uδ‖X(Ωδ ;Rn) . ‖gδ‖L2(Ωδ ;Rn)

for some constant independent of δ.



Well-posedness

Cost functional assumptions

I(u, g) :=
ˆ

Ω
F (x , u(x))dx + λ

2

ˆ
Ω

Γ(x)|g(x)|2dx

Here Zad is a box constraint, and F : Ω× Rn → R is such that:
1 For all v ∈ Rn the mapping x 7→ F (x , v) is measurable;
2 For all x ∈ Ω the mapping v 7→ F (x , v) is continuous and convex;
3 There exist c1 > 0 and ` ∈ L1(Ω)

|F (x , v)| ≤ c1|v |2+`(x)

for all x ∈ Ω, v ∈ Rn. Moreover, Γ ∈ L∞(Ω) is positive a.e. and λ ≥ 0



Well-posedness

Well-posedness of optimal control problem

Theorem (Well-posedness)
For any δ > 0: there exists (uδ, gδ) ∈ X0(Ωδ;Rn)× Zad minimizing

I(uδ, gδ) =
ˆ

Ω
F (x , uδ(x))dx + λ

2

ˆ
Ω

Γ(x)|gδ(x)|2dx ,

where uδ ∈ X0 solves

Bδ(uδ, vδ) =
ˆ

Ω
gδ(x) · vδ(x)dx ∀vδ ∈ X0

Furthermore, if F is strictly convex or λ > 0, then the minimizer is unique.



Convergence of state equation as δ → 0+

Optimality conditions

Let Sδ denote solution operator for state equation
Non-local continuous optimality conditions (including adjoint):

uδ = Sδgδ
pδ = S∗δ Fu(·, uδ) = SδFu(·, uδ)

〈pδ + λgδ, γz − gδ〉L2 ≥ 0, ∀γz ∈ Zad.

Projection formula:
gδ(x) = − 1

λ
PZad (pδ(x))

NOTE: No second-order optimality conditions needed (strict convexity!)



Convergence of state equation as δ → 0+

Convergence of state equation as δ → 0+

Local bi-linear form (of Navier-Lamé system of linear elasticity)

B0(u, v) := C(n)
ˆ

Ω
a(x)(2〈Sym(5u),Sym(5v)〉F + div(u)div(v))dx

where C(n) := 1
(n+2)(n+4) .

Theorem

Suppose {(uδ, gδ)}δ>0 is the family of solutions to the non-local problem. Then,
there is (u, g) such that uδ → u in L2(Ω;Rn) and gδ ⇀ g in L2(Ω;Rn). Moreover,
(u, g) solves the local optimal control problem.

Local state equation that (u, g) satisfies the constraint:

B0(u, v) =
ˆ

Ω
g(x) · v(x)dx

Can improve convergence of controls to strong L2 using projection formula



Discretization

Discrete Formulation

Use continuous piecewise linears for states
Use piecewise constants for controls
Discrete optimal control problem is well-posed



Discretization

Optimality conditions (discrete)

Let Sδ,h denote solution operator for state equation
Non-local discrete optimality conditions (including adjoint):

uδ,h = Sδ,hgδ,h
pδ,h = S∗δ,hFu(·, uδ,h) = Sδ,hFu(·, uδ,h)

〈pδ,h + λgδ,h, γz − gδ,h〉L2 ≥ 0, ∀γz ∈ Zad ∩ Zh.

Projection formula:

gδ,h(x) = − 1
λ
PZad (Π0pδ,h(x))

Here Π0 is defined as Π0z :=
ffl

T z on each triangle T in our mesh, and Zh is the
piecewise constants



Discretization

Intermediary Functions

By Lax-Milgram, we may define ûδ, p̂δ ∈ X0(Ωδ;Rn) such that

Bδ(ûδ, vδ) = 〈gδ,h, vδ〉 ∀vδ ∈ X0(Ωδ;Rn);

Bδ(vδ, p̂δ) = 〈vδ, uδ,h〉 ∀vδ ∈ X0(Ωδ;Rn);

also define ûh, p̂h ∈ H1
0 (Ω;Rn) such that

B0(ûh, v) = 〈gh, v〉 ∀v ∈ H1
0 (Ω;Rn);

B0(v , p̂h) = 〈v , ûh〉 ∀v ∈ H1
0 (Ω;Rn).



Discretization

Non-local problem convergence: summary

Theorem (Convergence)
In the setting of our problems,

‖uδ − uδ,h‖X(Ωδ ;Rn) . ω(h) + inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(Ωδ ;Rn)+

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn);

‖gδ − gδ,h‖2
L2(Ω;Rn) . ω(h)2 +

(
inf

vδ,h∈Xδ,h
[uδ − vδ,h]X(Ωδ ;Rn)

)2
+(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.

‖pδ−pδ,h‖X(Ωδ ;Rn) . ω(h)+ inf
vδ,h∈Xδ,h

‖p̂h−vδ,h‖X(Ωδ ;Rn)+ inf
vδ,h∈Xδ,h

‖ûδ−vδ,h‖X(Ωδ ;Rn)

+ inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn).



Discretization

Non-local problem convergence: comments

Idea for control proof attributed to D’Elia, Glusa, Otárola
Here ω(h) represents the approximation properties of the projection Π0

Xδ,h is our discrete non-local space
If our kernel is of fractional type, i.e. kδ(ξ) ∼ 1

|ξ|n+2s χB(0,δ)(ξ), then ω(h) ∼ hs



Discretization

Discrete analogue of convergence

Theorem (Discrete Convergence)

Suppose {(uδ,h, gδ,h)}δ>0 is the family of solutions to the non-local discrete
problem. Then, there is (uh, gh) such that uδ,h → uh in L2(Ω;Rn) and gδ,h → gδ
in L2(Ω;Rn). Moreover, (uh, gh) solves the local discrete optimal control problem.



Asymptotic compatibility

What is asymptotic compatibility?

Introduced by X. Tian and Q. Du (2014)
Originally developed for linear, non-local systems

Lδ,huδ,h = f
Unconditional convergence of approximations in both discretization and
horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions {uδ,h}δ,h>0 is
asymptotically compatible in δ, h > 0 if for any sequences {δk}∞k=1, {hk}∞k=1
with δk , hk → 0, we have that uδk ,hk → u0 strongly in some Hilbert space norm,
where u0 is the solution to a local, continuous problem.

uδ,h uh

uδ u0

h→0+ k→∞

δ→0+

h→0+

δ→0+



Asymptotic compatibility

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions {(uδ,h, gδ,h)}h>0,δ>0 to the nonlocal discrete
optimal control problem is asymptotically compatible in δ, h > 0 if for any
sequences {δk}∞k=1, {hk}∞k=1 with δk , hk → 0, we have that gδk ,hk → g strongly in
L2(Ω;Rn), and uδk ,hk → u strongly in L2(Ω;Rn). Here (u, g) ∈ H1

0 (Ω;Rn)× Zad
denotes the optimal solution for the local continuous problem.

NOTE: In particular, H1
0 (Ω;Rn) is the limiting space of X0(Ωδ;Rn) as δ → 0+

(uδ,h, gδ,h) (uh, gh)

(uδ, gδ) (u, g)

h→0+ k→∞

δ→0+

h→0+

δ→0+



Asymptotic compatibility

Asymptotic compatibility: result and notation

Theorem
Assume A is Lipschitz. Then, our family of optimal control problems is
asymptotically compatible as δ, h→ 0+.

Define Aδ : X0(Ωδ;Rn)→ (X0(Ωδ;Rn))∗ as the invertible operator such that

〈Aδu, v〉X∗0 ,X0 = Bδ(u, v) ∀u, v ∈ X0(Ωδ;Rn);

define A0 : H1
0 (Ω;Rn)→ H−1(Ω;Rn) as the invertible operator such that

〈A0u, v〉H−1,H1
0

= B0(u, v) ∀u, v ∈ H1
0 (Ω;Rn).



Asymptotic compatibility

Proof of asymptotic compatibility

Needed preliminaries:
1 Given a v ∈ H1

0 (Ω;Rn), and hk , δk → 0, we can find a sequence vk ∈ Xδk ,hk

such that vk → v strongly in H1(Ω;Rn) as k →∞.
2 For any sequences {δk}∞k=1, {hk}∞k=1 with δk , hk → 0, there exists a C > 0 so

that ‖uδk ,hk‖X(Ωδk ;Rn)≤ C uniformly in k ∈ N+.
3 We have that Aδu ∈ L2(Ω;Rn) and limδ→0+‖Aδu − A0u‖L2(Ω;Rn) = 0 for

each u ∈ C∞0 (Ω;Rn).
Pick sub-sequence of {(uk , gk , pk)}∞k=1 so there is a limit point
(u∗, g∗, p∗) ∈ H1

0 (Ω;Rn)× Zad × H1
0 (Ω;Rn) with convergence in appropriate

topology (weak convergence of controls)



Asymptotic compatibility

Proof of asymptotic compatibility (continued)

Step 1: Show that B0(u∗, ϕ) = 〈g∗, ϕ〉 for all ϕ ∈ H1
0 (Ω;Rn)

Pick ϕ ∈ C∞0 (Ω;Rn), let wk := Ikϕ (nodal interpolation), wk → ϕ in
W 1,∞(Ω;Rn), then compute limit as k →∞ of

Bδk (uk ,wk) = 〈Aδkϕ, uk〉X∗0 ,X0 + 〈Aδk (wk − ϕ), uk〉X∗0 ,X0 =: Ik + IIk .

Step 2: Show that B0(ϕ, p∗) = 〈u∗, ϕ〉 for all ϕ ∈ H1
0 (Ω;Rn)

Strategy is identical to Step 1!
Step 3: Show that g∗(x) = PZad

(
− 1
λp∗(x)

)
Recall that gk(x) = PZad

(
− 1
λΠ0pk(x)

)
, show Π0pk → p∗ strongly in L2(Ω;Rn)



Asymptotic compatibility

Proof of asymptotic compatibility (continued)

Step 4: Unraveling
Steps 1-3 and uniqueness of solutions to optimality system give u = u∗,
g = g∗, and p = p∗
This is the limit point reached for any sub-sequence of original sequence
Entire sequence of triples {(uk , gk , pk)}∞k=1 converges to (u, g , p)

Step 5: Strong convergence of controls
Use the Lipschitz property of the projection and the estimate

‖gk − g‖L2(Ω;Rn) . ‖p − Π0p‖L2(Ω;Rn)+‖Π0p − Π0pk‖L2(Ω;Rn)



Asymptotic compatibility

Recap and closing

Showed existence and uniqueness of minimizers
Considered behavior as δ → 0+

Discretized via FEMs
Studied simultaneous limit as δ, h→ 0+

Thank you! Questions?



Asymptotic compatibility

Auxiliary lemmas

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that
c

|ξ|n+2s ≤
kδ(ξ)
|ξ|2

≤ C
|ξ|n+2s

holds for all ξ ∈ B(0, δ), for some s 6= 1
2 . Then necessarily gδ ∈ X (Ωδ;Rn).

Recall Fractional Sobolev Space (special case of our kernels):

Hs(Ωδ;Rn) :=
{
u|Ω∈ L2(Ω;Rn), |u(x)− u(y)|

|x − y | n2 +s ∈ L2(Ωδ × Ωδ)
}

Proof strategy:
Mengesha-Du 2016 says that Hs(Ωδ;Rn) = X (Ωδ;Rn) here
Use projection formula gδ(x) = − 1

λPZad (pδ(x))
This pointwise projection is continuous in Hs semi-norm but not X
semi-norm!



Asymptotic compatibility

Auxiliary lemmas (continued)

Lemma (Approximation)

If w ∈ L2(Ωδ;Rn), then

‖Π0w − w‖L2(Ω;Rn) ≤ ω(h),

where Π0 : L2(Ωδ;Rn)→ Zh denotes the projection of a function onto the
piecewise constants with respect to the given mesh. If in fact w ∈ X (Ωδ;Rn) and
kδ satisfies the fractional inequality on B(0, δ) for some s 6= 1

2 , then

‖Π0w − w‖L2(Ω;Rn) . hs‖w‖X(Ωδ ;Rn).

Back



Asymptotic compatibility

Control convergence (continued)

Galerkin Approximations:
qδ,h ∈ Xδ,h be the Galerkin approximation to pδ, i.e., the solution of

Bδ(vδ,h, qδ,h) = 〈uδ, vδ,h〉 ∀vδ,h ∈ Xδ,h.

Uδ,h ∈ Xδ,h for uδ:

Bδ(Uδ,h, vδ,h) = 〈gδ, vδ,h〉 ∀vδ,h ∈ Xδ,h.

rδ,h ∈ Xδ,h solves

Bδ(vδ,h, rδ,h) = 〈Uδ,h, vδ,h〉 ∀vδ,h ∈ Xδ,h.

Back



Asymptotic compatibility

Control convergence (continued)

Let I1 := 〈pδ − pδ,h, gδ,h − gδ〉 and I2 := 〈pδ,h + λgδ,h,Π0gδ − gδ〉. Using
optimality conditions gives

λ‖gδ − gδ,h‖2
L2(Ω;Rn) ≤ I1 + I2.

I1 = 〈pδ − qδ,h, gδ,h − gδ〉+ 〈qδ,h − rδ,h, gδ,h − gδ〉+ 〈rδ,h − pδ,h, gδ,h − gδ〉 =:
I1,1 + I1,2 + I1,3.

By use of Galerkin approximations, find that I1,3 ≤ 0 and

I1,1 . ‖gδ,h − gδ‖L2(Ω;Rn) inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn);

I1,2 . ‖gδ,h − gδ‖L2(Ω;Rn) inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn).



Asymptotic compatibility

Control convergence (continued)

By Young’s Inequality,

I1 ≤
λ

3 ‖gδ,h − gδ‖2
L2(Ω;Rn)+C

(
inf

vδ,h∈Xδ,h
[uδ − vδ,h]X(Ωδ ;Rn)

)2
+

C
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.



Asymptotic compatibility

Control convergence (continued)

Now we write I2 as

〈pδ,h + λgδ,h,Π0gδ − gδ〉 = 〈pδ + λgδ,Π0gδ − gδ〉+ λ〈gδ,h − gδ,Π0gδ − gδ〉+
〈pδ,h − rδ,h,Π0gδ − gδ〉+ 〈rδ,h − qδ,h,Π0gδ − gδ〉+ 〈qδ,h − pδ,Π0gδ − gδ〉 =:
I2,1 + I2,2 + I2,3 + I2,4 + I2,5.



Asymptotic compatibility

Control convergence (continued)

Use that Π0(pδ + λgδ) = 0 to estimate I2,1 as

I2,1 ≤ ω(h).

For I2,2, use Cauchy and stability:

I2,2 ≤
λ

3 ‖gδ,h − gδ‖2
L2(Ω;Rn)+ω(h),



Asymptotic compatibility

Control convergence (continued)

For I2,3, use Galerkin approximations and the stabilty:

I2,3 ≤ ω(h)2 +
(

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn)

)2

For I2,4 and I2,5, use Ceá’s lemma and Cauchy:

I2,4 ≤ ω(h)2 +
(

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn)

)2
;

I2,5 ≤ ω(h)2 +
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.



Asymptotic compatibility

Control convergence (continued)

Use Young’s Inequality and combine all the estimates to get

λ

3 ‖gδ − gδ,h‖2
L2(Ω;Rn) . ω(h)2 +

(
inf

vδ,h∈Xδ,h
[uδ − vδ,h]X(Ωδ ;Rn)

)2
+(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.
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