Analysis and Discretization of Optimal Control Problems in Peridynamics

Joshua Siktar jsiktar@vols.utk.edu (joint with Tadele Mengesha and Abner J. Salgado)

2024 Joint Mathematics Meetings (Theoretical and Numerical Aspects of Nonlocal Models)

January 2024

DEPARTMENT OF MATHEMATICS

- Thanks to my co-advisors Abner J. Salgado and Tadele Mengesha for their continued mentorship
- Thanks to NSF grant 2111228 for financial support
- Thanks to Nicole Buczkowski, Christian Glusa, and Animesh Biswas for organizing the session

Problem Formulation

Problem statement

Find $(\overline{u_{\delta}}, \overline{g_{\delta}}) \in X_0 \times Z_{ad}$ such that

$$I(\overline{u_{\delta}},\overline{g_{\delta}}) = \min_{g_{\delta} \in L^{2}, u_{\delta} \in X_{0}} \left\{ \int_{\Omega} F(x, u_{\delta}(x)) dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x) |g_{\delta}(x)|^{2} dx \right\},$$

subject to the strongly coupled system of equations

$$\mathcal{L}_{\delta} u_{\delta} = g_{\delta}$$

- δ ≥ 0 is the degree of non-locality (the horizon parameter in peridynamics);
- $\overline{g_{\delta}}$ is a [vector-valued] external force;
- $\overline{u_{\delta}}$ represents the [vector-valued] displacement.
- \mathcal{L}_{δ} is a non-local operator, exact formula to be given.

Outline

- Problem Formulation
- Onterior and Functional Setting
 - Well-posedness
- ${\color{black} {f 0} {f 0}}$ Convergence of state equation as $\delta o 0^+$
- **Discretization**
- 6 Asymptotic compatibility

Sample candidate integrand

Suppose we want to deform our material to fit a predetermined hole of shape $u_{\rm des}$ as closely as possible. Then our candidate integrand is

$$F(x, u(x)) = |u(x) - u_{des}(x)|^2$$

- Show existence and uniqueness of minimizers
- Consider behavior as $\delta \to 0^+$
- Discretize via FEMs
- Study simultaneous limit as $\delta, h \rightarrow 0^+$ (asymptotic compatibility)

Bi-linear form induces non-local state equation:

$$B_{\delta}(u,v) := \iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x,y) k_{\delta}(x-y) \frac{Du(x,y)}{|x-y|} \frac{Dv(x,y)}{|x-y|} dx dy = \int_{\Omega} g(x) \cdot v(x) dx$$

- $\bullet \ \mathfrak{A}$ is positive, bounded, symmetric
- k_{δ} a kernel with suitable properties
- $\mathcal{D}_{\delta} := (\Omega \times \Omega_{\delta}) \cup (\Omega_{\delta} \times \Omega)$, where $\Omega_{\delta} := \Omega \cup \{x \in \mathbb{R}^{n}, \mathsf{dist}(x, \partial \Omega) < \delta\}$
- Du is projected difference, $Du(x, y) := (u(x) u(y)) \cdot \frac{x-y}{|x-y|}$
- Models arise in peridynamics, specifically the bond-based model

Our function space is based on B_{δ} :

$$X(\Omega_{\delta};\mathbb{R}^n):=\{u|_{\Omega}\in L^2(\Omega;\mathbb{R}^n), B_{\delta}(u,u)<\infty\}$$

Version with zero non-local boundary data:

$$X_0(\Omega_{\delta};\mathbb{R}^n):=\{u\in X(\Omega_{\delta};\mathbb{R}^n), u=0 \text{ in } \Omega_{\delta}\setminus\Omega\}$$

Well-posedness

State equation is well-posed!

Proposition (Nonlocal Poincaré-Korn (Mengesha-Du 2014))

There exists a $\delta_0 > 0$ and a constant $C(\delta_0) > 0$ such that for all $\delta \in (0, \delta_0]$ and $u \in X_0(\Omega_{\delta}; \mathbb{R}^n)$,

$$\|u\|_{L^2(\Omega;\mathbb{R}^n)}^2 \leq C(\delta_0) \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} k_{\delta}(x-y) \frac{|Du(x,y)|^2}{|x-y|^2} dx dy.$$

NOTE: The projected difference vanishes under infinitesimal rigid displacements.

Theorem (Existence and Uniqueness for State Equation)

For any $g_{\delta} \in L^2$, there exists a unique $u_{\delta} \in X_0$ such that the state system

$$B_{\delta}(u_{\delta}, w_{\delta}) = \langle g_{\delta}, w_{\delta} \rangle$$

is satisfied for all $w_{\delta} \in X_0$. Furthermore, we have the stability estimate

$$\|u_{\delta}\|_{X(\Omega_{\delta};\mathbb{R}^n)} \lesssim \|g_{\delta}\|_{L^2(\Omega_{\delta};\mathbb{R}^n)}$$

for some constant independent of δ .

Well-posedness

Cost functional assumptions

$$I(u,g) := \int_{\Omega} F(x,u(x))dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x)|g(x)|^2 dx$$

Here Z_{ad} is a box constraint, and $F : \Omega \times \mathbb{R}^n \to \mathbb{R}$ is such that:

- **(**) For all $v \in \mathbb{R}^n$ the mapping $x \mapsto F(x, v)$ is measurable;
- **2** For all $x \in \Omega$ the mapping $v \mapsto F(x, v)$ is continuous and convex;

• There exist
$$c_1 > 0$$
 and $\ell \in L^1(\Omega)$

 $|F(x,v)| \le c_1 |v|^2 + \ell(x)$

for all $x \in \Omega$, $v \in \mathbb{R}^n$. Moreover, $\Gamma \in L^{\infty}(\Omega)$ is positive a.e. and $\lambda \geq 0$

Well-posedness of optimal control problem

Theorem (Well-posedness)

For any $\delta > 0$: there exists $(\overline{u_{\delta}}, \overline{g_{\delta}}) \in X_0(\Omega_{\delta}; \mathbb{R}^n) \times Z_{ad}$ minimizing

$$I(u_{\delta},g_{\delta}) = \int_{\Omega} F(x,u_{\delta}(x)) dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x) |g_{\delta}(x)|^2 dx$$

where $\overline{u_{\delta}} \in X_0$ solves

$$B_{\delta}(u_{\delta},v_{\delta}) = \int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) dx \quad \forall v_{\delta} \in X_{0}$$

Furthermore, if F is strictly convex or $\lambda > 0$, then the minimizer is unique.

Let S_{δ} denote solution operator for state equation **Non-local continuous optimality conditions** (including adjoint):

$$\begin{aligned} \overline{u_{\delta}} &= S_{\delta}\overline{g_{\delta}} \\ \overline{p_{\delta}} &= S_{\delta}^*F_u(\cdot,\overline{u_{\delta}}) &= S_{\delta}F_u(\cdot,\overline{u_{\delta}}) \\ \langle \overline{p_{\delta}} + \lambda \overline{g_{\delta}}, \gamma_z - \overline{g_{\delta}} \rangle_{L^2} &\geq 0, \quad \forall \gamma_z \in Z_{ad}. \end{aligned}$$

Projection formula:

$$\overline{g_{\delta}}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\overline{p_{\delta}}(x))$$

NOTE: No second-order optimality conditions needed (strict convexity!)

Convergence of state equation as $\delta \rightarrow 0^+$

Local bi-linear form (of Navier-Lamé system of linear elasticity)

$$B_0(u,v) := C(n) \int_{\Omega} \mathfrak{a}(x) (2\langle \operatorname{Sym}(\nabla u), \operatorname{Sym}(\nabla v) \rangle_F + \operatorname{div}(u) \operatorname{div}(v)) dx$$

where $C(n) := \frac{1}{(n+2)(n+4)}$.

Theorem

Suppose $\{(\overline{u_{\delta}}, \overline{g_{\delta}})\}_{\delta>0}$ is the family of solutions to the non-local problem. Then, there is $(\overline{u}, \overline{g})$ such that $\overline{u_{\delta}} \to \overline{u}$ in $L^2(\Omega; \mathbb{R}^n)$ and $\overline{g_{\delta}} \to \overline{g}$ in $L^2(\Omega; \mathbb{R}^n)$. Moreover, $(\overline{u}, \overline{g})$ solves the local optimal control problem.

Local state equation that $(\overline{u}, \overline{g})$ satisfies the constraint:

$$B_0(u,v) = \int_{\Omega} g(x) \cdot v(x) dx$$

Can improve convergence of controls to strong L^2 using projection formula

Discretization

- Use continuous piecewise linears for states
- Use piecewise constants for controls
- Discrete optimal control problem is well-posed

Let $S_{\delta,h}$ denote solution operator for state equation **Non-local discrete optimality conditions** (including adjoint):

$$\begin{aligned} \overline{u_{\delta,h}} &= S_{\delta,h}\overline{g_{\delta,h}} \\ \overline{p_{\delta,h}} &= S_{\delta,h}^*F_u(\cdot,\overline{u_{\delta,h}}) &= S_{\delta,h}F_u(\cdot,\overline{u_{\delta,h}}) \\ \langle \overline{p_{\delta,h}} + \lambda \overline{g_{\delta,h}}, \gamma_z - \overline{g_{\delta,h}} \rangle_{L^2} &\geq 0, \quad \forall \gamma_z \in Z_{ad} \cap Z_h. \end{aligned}$$

Projection formula:

$$\overline{g_{\delta,h}}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\Pi_0 \overline{p_{\delta,h}}(x))$$

Here Π_0 is defined as $\Pi_0 z := \int_T z$ on each triangle T in our mesh, and Z_h is the piecewise constants

Discretization

Intermediary Functions

By Lax-Milgram, we may define $\widehat{u_{\delta}}, \widehat{p_{\delta}} \in X_0(\Omega_{\delta}; \mathbb{R}^n)$ such that

$$B_{\delta}(\widehat{u_{\delta}}, v_{\delta}) = \langle \overline{g_{\delta,h}}, v_{\delta} \rangle \quad \forall v_{\delta} \in X_{0}(\Omega_{\delta}; \mathbb{R}^{n});$$

$$B_{\delta}(v_{\delta},\widehat{p_{\delta}}) = \langle v_{\delta},\overline{u_{\delta,h}}
angle \quad \forall v_{\delta} \in X_0(\Omega_{\delta};\mathbb{R}^n);$$

also define $\widehat{u_h}, \widehat{p_h} \in H^1_0(\Omega; \mathbb{R}^n)$ such that

$$\begin{split} B_0(\widehat{u_h}, v) &= \langle \overline{g_h}, v \rangle \quad \forall v \in H_0^1(\Omega; \mathbb{R}^n); \\ B_0(v, \widehat{p_h}) &= \langle v, \widehat{u_h} \rangle \quad \forall v \in H_0^1(\Omega; \mathbb{R}^n). \end{split}$$

Discretization

Non-local problem convergence: summary

Theorem (Convergence)

In the setting of our problems,

$$\begin{split} \|\overline{u_{\delta}} - \overline{u_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \lesssim & \omega(h) + \inf_{\substack{v_{\delta,h} \in X_{\delta,h}}} \|\widehat{u_{\delta}} - v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \\ & \inf_{\substack{v_{\delta,h} \in X_{\delta,h}}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{\substack{v_{\delta,h} \in X_{\delta,h}}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}; \end{split}$$

$$egin{aligned} \|\overline{g_{\delta}}-\overline{g_{\delta,h}}\|^2_{L^2(\Omega;\mathbb{R}^n)} \lesssim & \omega(h)^2 + \left(\inf_{v_{\delta,h}\in X_{\delta,h}}[\overline{u_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^n)}
ight)^2 + & \left(\inf_{v_{\delta,h}\in X_{\delta,h}}[\overline{p_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^n)}
ight)^2. \end{aligned}$$

$$\begin{split} \|\overline{\rho_{\delta}}-\overline{\rho_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} &\lesssim \ \omega(h) + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{\rho_{h}}-v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{u_{\delta}}-v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \\ &+ \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{\rho_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}. \end{split}$$

Non-local problem convergence: comments

- Idea for control proof attributed to D'Elia, Glusa, Otárola
- Here $\omega(h)$ represents the approximation properties of the projection Π_0
- $X_{\delta,h}$ is our discrete non-local space
- If our kernel is of fractional type, i.e. $k_{\delta}(\xi) \sim \frac{1}{|\xi|^{n+2s}} \chi_{B(0,\delta)}(\xi)$, then $\omega(h) \sim h^s$

Discretization

Discrete analogue of convergence

Theorem (Discrete Convergence)

Suppose $\{(\overline{u_{\delta,h}}, \overline{g_{\delta,h}})\}_{\delta>0}$ is the family of solutions to the non-local discrete problem. Then, there is $(\overline{u_h}, \overline{g_h})$ such that $\overline{u_{\delta,h}} \to \overline{u_h}$ in $L^2(\Omega; \mathbb{R}^n)$ and $\overline{g_{\delta,h}} \to \overline{g_{\delta}}$ in $L^2(\Omega; \mathbb{R}^n)$. Moreover, $(\overline{u_h}, \overline{g_h})$ solves the local discrete optimal control problem.

What is asymptotic compatibility?

- Introduced by X. Tian and Q. Du (2014)
- Originally developed for linear, non-local systems

 $\mathcal{L}_{\delta,h}u_{\delta,h}=f$

• Unconditional convergence of approximations in both discretization and horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions $\{u_{\delta,h}\}_{\delta,h>0}$ is **asymptotically compatible** in $\delta, h > 0$ if for any sequences $\{\delta_k\}_{k=1}^{\infty}, \{h_k\}_{k=1}^{\infty}$ with $\delta_k, h_k \to 0$, we have that $u_{\delta_k,h_k} \to u_0$ strongly in some Hilbert space norm, where u_0 is the solution to a local, continuous problem.

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions $\{(\overline{u_{\delta,h}}, \overline{g_{\delta,h}})\}_{h>0,\delta>0}$ to the nonlocal discrete optimal control problem is **asymptotically compatible** in $\delta, h > 0$ if for any sequences $\{\delta_k\}_{k=1}^{\infty}, \{h_k\}_{k=1}^{\infty}$ with $\delta_k, h_k \to 0$, we have that $\overline{g_{\delta_k,h_k}} \to \overline{g}$ strongly in $L^2(\Omega; \mathbb{R}^n)$, and $\overline{u_{\delta_k,h_k}} \to \overline{u}$ strongly in $L^2(\Omega; \mathbb{R}^n)$. Here $(\overline{u}, \overline{g}) \in H_0^1(\Omega; \mathbb{R}^n) \times Z_{ad}$ denotes the optimal solution for the local continuous problem.

NOTE: In particular, $H_0^1(\Omega; \mathbb{R}^n)$ is the limiting space of $X_0(\Omega_{\delta}; \mathbb{R}^n)$ as $\delta \to 0^+$

Asymptotic compatibility: result and notation

Theorem

Assume \mathfrak{A} is Lipschitz. Then, our family of optimal control problems is asymptotically compatible as $\delta, h \to 0^+$.

Define $A_{\delta}: X_0(\Omega_{\delta}; \mathbb{R}^n) \to (X_0(\Omega_{\delta}; \mathbb{R}^n))^*$ as the invertible operator such that

$$\langle A_{\delta}u,v\rangle_{X_0^*,X_0} = B_{\delta}(u,v) \quad \forall u,v \in X_0(\Omega_{\delta};\mathbb{R}^n);$$

define $A_0: H^1_0(\Omega; \mathbb{R}^n) \to H^{-1}(\Omega; \mathbb{R}^n)$ as the invertible operator such that

$$\langle A_0 u, v \rangle_{H^{-1}, H^1_0} = B_0(u, v) \quad \forall u, v \in H^1_0(\Omega; \mathbb{R}^n).$$

Proof of asymptotic compatibility

Needed preliminaries:

- Given a $v \in H^1_0(\Omega; \mathbb{R}^n)$, and $h_k, \delta_k \to 0$, we can find a sequence $v_k \in X_{\delta_k, h_k}$ such that $v_k \to v$ strongly in $H^1(\Omega; \mathbb{R}^n)$ as $k \to \infty$.
- Our For any sequences {δ_k}[∞]_{k=1}, {h_k}[∞]_{k=1} with δ_k, h_k → 0, there exists a C > 0 so that ||u_{δ_k,h_k}||_{X(Ωδ_k;ℝⁿ)} ≤ C uniformly in k ∈ N⁺.
- O We have that A_δu ∈ L²(Ω; ℝⁿ) and lim_{δ→0⁺} ||A_δu − A₀u||_{L²(Ω;ℝⁿ)} = 0 for each u ∈ C₀[∞](Ω; ℝⁿ).

Pick sub-sequence of $\{(\overline{u_k}, \overline{g_k}, \overline{p_k})\}_{k=1}^{\infty}$ so there is a limit point $(u_*, g_*, p_*) \in H_0^1(\Omega; \mathbb{R}^n) \times Z_{ad} \times H_0^1(\Omega; \mathbb{R}^n)$ with convergence in appropriate topology (weak convergence of controls)

Proof of asymptotic compatibility (continued)

Step 1: Show that $B_0(u_*, \varphi) = \langle g_*, \varphi \rangle$ for all $\varphi \in H_0^1(\Omega; \mathbb{R}^n)$ Pick $\varphi \in C_0^{\infty}(\Omega; \mathbb{R}^n)$, let $w_k := I_k \varphi$ (nodal interpolation), $w_k \to \varphi$ in $W^{1,\infty}(\Omega; \mathbb{R}^n)$, then compute limit as $k \to \infty$ of

$$B_{\delta_k}(\overline{u_k}, w_k) = \langle A_{\delta_k} \varphi, \overline{u_k} \rangle_{X_0^*, X_0} + \langle A_{\delta_k}(w_k - \varphi), \overline{u_k} \rangle_{X_0^*, X_0} =: I_k + II_k.$$

Step 2: Show that $B_0(\varphi, p_*) = \langle u_*, \varphi \rangle$ for all $\varphi \in H_0^1(\Omega; \mathbb{R}^n)$ Strategy is identical to Step 1!

Step 3: Show that $g_*(x) = \mathbb{P}_{Z_{ad}}\left(-\frac{1}{\lambda}p_*(x)\right)$ Recall that $\overline{g_k}(x) = \mathbb{P}_{Z_{ad}}\left(-\frac{1}{\lambda}\Pi_0\overline{p_k}(x)\right)$, show $\Pi_0\overline{p_k} \to p_*$ strongly in $L^2(\Omega; \mathbb{R}^n)$

Proof of asymptotic compatibility (continued)

Step 4: Unraveling

- Steps 1-3 and uniqueness of solutions to optimality system give $\overline{u}=u_*,$ $\overline{g}=g_*,$ and $\overline{p}=p_*$
- This is the limit point reached for any sub-sequence of original sequence
- Entire sequence of triples $\{(\overline{u_k}, \overline{g_k}, \overline{p_k})\}_{k=1}^{\infty}$ converges to $(\overline{u}, \overline{g}, \overline{p})$

Step 5: Strong convergence of controls Use the Lipschitz property of the projection and the estimate

$$\|\overline{g_k} - \overline{g}\|_{L^2(\Omega;\mathbb{R}^n)} \lesssim \|\overline{p} - \Pi_0 \overline{p}\|_{L^2(\Omega;\mathbb{R}^n)} + \|\Pi_0 \overline{p} - \Pi_0 \overline{p_k}\|_{L^2(\Omega;\mathbb{R}^n)}$$

- Showed existence and uniqueness of minimizers
- $\bullet\,$ Considered behavior as $\delta\to 0^+$
- Discretized via FEMs
- $\bullet\,$ Studied simultaneous limit as $\delta, h \to 0^+$

Thank you! Questions?

Auxiliary lemmas

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that

$$rac{c}{|\xi|^{n+2s}} \ \le \ rac{k_{\delta}(\xi)}{|\xi|^2} \ \le \ rac{C}{|\xi|^{n+2s}}$$

holds for all $\xi \in B(0, \delta)$, for some $s \neq \frac{1}{2}$. Then necessarily $\overline{g_{\delta}} \in X(\Omega_{\delta}; \mathbb{R}^{n})$.

Recall Fractional Sobolev Space (special case of our kernels):

$$H^{s}(\Omega_{\delta};\mathbb{R}^{n}) := \left\{ u|_{\Omega} \in L^{2}(\Omega;\mathbb{R}^{n}), \frac{|u(x) - u(y)|}{|x - y|^{\frac{n}{2} + s}} \in L^{2}(\Omega_{\delta} \times \Omega_{\delta}) \right\}$$

Proof strategy:

- Mengesha-Du 2016 says that $H^{s}(\Omega_{\delta}; \mathbb{R}^{n}) = X(\Omega_{\delta}; \mathbb{R}^{n})$ here
- Use projection formula $\overline{g_{\delta}}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\overline{p_{\delta}}(x))$
- This pointwise projection is continuous in *H^s* semi-norm but not *X* semi-norm!

Auxiliary lemmas (continued)

Lemma (Approximation)

If $w \in L^2(\Omega_{\delta}; \mathbb{R}^n)$, then

$$\|\Pi_0 w - w\|_{L^2(\Omega;\mathbb{R}^n)} \leq \omega(h),$$

where $\Pi_0 : L^2(\Omega_{\delta}; \mathbb{R}^n) \to Z_h$ denotes the projection of a function onto the piecewise constants with respect to the given mesh. If in fact $w \in X(\Omega_{\delta}; \mathbb{R}^n)$ and k_{δ} satisfies the fractional inequality on $B(0, \delta)$ for some $s \neq \frac{1}{2}$, then

$$\|\Pi_0 w - w\|_{L^2(\Omega;\mathbb{R}^n)} \lesssim h^s \|w\|_{X(\Omega_\delta;\mathbb{R}^n)}.$$

Galerkin Approximations:

 $q_{\delta,h} \in X_{\delta,h}$ be the Galerkin approximation to $\overline{p_{\delta}}$, i.e., the solution of

$$B_{\delta}(v_{\delta,h},q_{\delta,h}) = \langle \overline{u_{\delta}},v_{\delta,h} \rangle \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

 $U_{\delta,h} \in X_{\delta,h}$ for $\overline{u_{\delta}}$:

$$B_{\delta}(U_{\delta,h},v_{\delta,h}) = \langle \overline{g_{\delta}},v_{\delta,h} \rangle \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

 $r_{\delta,h} \in X_{\delta,h}$ solves

$$B_{\delta}(v_{\delta,h},r_{\delta,h}) = \langle U_{\delta,h},v_{\delta,h} \rangle \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

Back

Let $I_1 := \langle \overline{p_{\delta}} - \overline{p_{\delta,h}}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle$ and $I_2 := \langle \overline{p_{\delta,h}} + \lambda \overline{g_{\delta,h}}, \Pi_0 \overline{g_{\delta}} - \overline{g_{\delta}} \rangle$. Using optimality conditions gives

$$\lambda \|\overline{g_{\delta}} - \overline{g_{\delta,h}}\|_{L^2(\Omega;\mathbb{R}^n)}^2 \leq I_1 + I_2.$$

$$I_{1} = \langle \overline{p_{\delta}} - q_{\delta,h}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle + \langle q_{\delta,h} - r_{\delta,h}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle + \langle r_{\delta,h} - \overline{p_{\delta,h}}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle =: I_{1,1} + I_{1,2} + I_{1,3}.$$

By use of Galerkin approximations, find that $\mathit{I}_{1,3} \leq 0$ and

$$I_{1,1} \lesssim \|\overline{g_{\delta,h}} - \overline{g_{\delta}}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})};$$

$$I_{1,2} \lesssim \|\overline{g_{\delta,h}} - \overline{g_{\delta}}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}.$$

By Young's Inequality,

$$egin{aligned} &\mathcal{I}_1 &\leq rac{\lambda}{3} \|\overline{g_{\delta,h}} - \overline{g_\delta}\|_{L^2(\Omega;\mathbb{R}^n)}^2 + C \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2 + \ &C \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2. \end{aligned}$$

Now we write I_2 as

 $\begin{array}{ll} \langle \overline{p_{\delta,h}} + \lambda \overline{g_{\delta,h}}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle &= \langle \overline{p_\delta} + \lambda \overline{g_\delta}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle + \lambda \langle \overline{g_{\delta,h}} - \overline{g_\delta}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle + \\ \langle \overline{p_{\delta,h}} - r_{\delta,h}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle + \langle r_{\delta,h} - q_{\delta,h}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle + \langle q_{\delta,h} - \overline{p_\delta}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle \\ |l_{2,1} + l_{2,2} + l_{2,3} + l_{2,4} + l_{2,5}. \end{array}$

Use that
$$\Pi_0(\overline{p_{\delta}} + \lambda \overline{g_{\delta}}) = 0$$
 to estimate $I_{2,1}$ as

 $I_{2,1} \leq \omega(h).$

For $I_{2,2}$, use Cauchy and stability:

$$I_{2,2} ~\leq~ rac{\lambda}{3} \| \overline{g_{\delta,h}} - \overline{g_\delta} \|_{L^2(\Omega;\mathbb{R}^n)}^2 + \omega(h),$$

For $I_{2,3}$, use Galerkin approximations and the stabilty:

$$I_{2,3} \leq \omega(h)^2 + \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2$$

For $I_{2,4}$ and $I_{2,5}$, use Ceá's lemma and Cauchy:

Use Young's Inequality and combine all the estimates to get

$$rac{\lambda}{3} \|\overline{g_\delta} - \overline{g_{\delta,h}}\|_{L^2(\Omega;\mathbb{R}^n)}^2 \lesssim \omega(h)^2 + \left(\inf_{egin{smallmatrix} v_{\delta,h} \in X_{\delta,h}} [\overline{u_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2 + \ \left(\inf_{egin{smallmatrix} v_{\delta,h} \in X_{\delta,h}} [\overline{p_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2.$$

