Analysis and Discretization of Optimal Control Problems in Peridynamics

Joshua Siktar
jsiktar@vols.utk.edu
(joint with Tadele Mengesha and Abner J. Salgado)

2023 SIAM Central States Section (Theoretical and Applied Aspects of Nonlocal Models)
October 2023

T
THE UNIVERSITY OF
TENNESSEE
KNOXVILLE

Acknowledgments

- Thanks to my co-advisors Abner J. Salgado and Tadele Mengesha for their continued mentorship
- Thanks to NSF grant 2111228 for financial support
- Thanks to Animesh Biswas, Javier Cueto, and Scott Hootman Ng for organizing the session
(1) Problem Formulation
(2) Notation and Functional Setting
(3) Well-posedness

4) Convergence of state equation as $\delta \rightarrow 0^{+}$
(5) Discretization
(6) Asymptotic compatibility

Problem statement

Find $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \in X_{0} \times Z_{\text {ad }}$ such that

$$
I\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right)=\min _{g_{\delta} \in L^{2}, u_{\delta} \in X_{0}}\left\{\int_{\Omega} F\left(x, u_{\delta}(x)\right) d x+\frac{\lambda}{2} \int_{\Omega} \Gamma(x)\left|g_{\delta}(x)\right|^{2} d x\right\}
$$

subject to the strongly coupled system of equations

$$
\mathcal{L}_{\delta} u_{\delta}=g_{\delta}
$$

- $\delta \geq 0$ is the degree of non-locality (the horizon parameter in peridynamics);
- $\overline{g_{\delta}}$ is a [vector-valued] external force;
- $\overline{u_{\delta}}$ represents the [vector-valued] displacement.
- \mathcal{L}_{δ} is a non-local operator, exact formula to be given.

Sample candidate integrand

Suppose we want to deform our material to fit a predetermined hole of shape $u_{\text {des }}$ as closely as possible. Then our candidate integrand is

$$
F(x, u(x))=\left|u(x)-u_{\mathrm{des}}(x)\right|^{2}
$$

Material
(deformable)

Hole (fixed
shape)

Goals

- Show existence and uniqueness of minimizers
- Consider behavior as $\delta \rightarrow 0^{+}$
- Discretize via FEMs
- Study simultaneous limit as $\delta, h \rightarrow 0^{+}$(asymptotic compatibility)

Bi-linear forms

Bi-linear form induces non-local state equation:

$$
B_{\delta}(u, v):=\iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x, y) k_{\delta}(x-y) \frac{D u(x, y)}{|x-y|} \frac{D v(x, y)}{|x-y|} d x d y=\int_{\Omega} g(x) \cdot v(x) d x
$$

- $\mathfrak{A}(x, y)=\frac{\mathfrak{a}(x)+\mathfrak{a}(y)}{2}$ is positive, bounded, symmetric
- k_{δ} a kernel with suitable properties
- $D u$ is projected difference, $D u(x, y):=(u(x)-u(y)) \cdot \frac{x-y}{|x-y|}$
- $\Omega_{\delta}:=\{x, \operatorname{dist}(x, \partial \Omega)<\delta\} \cup \Omega$
- $\mathcal{D}_{\delta}=\left(\Omega \times \Omega_{\delta}\right) \cup\left(\Omega_{\delta} \times \Omega\right)$
- Models arise in peridynamics, specifically bond-based model

Function spaces

Our function space is based on B_{δ} :

$$
X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right):=\left\{\left.u\right|_{\Omega} \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right), B_{\delta}(u, u)<\infty\right\}
$$

Version with zero non-local boundary data:

$$
X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right):=\left\{u \in X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right), u=0 \text { in } \Omega_{\delta} \backslash \Omega\right\}
$$

State equation is well-posed!

Proposition (Nonlocal Poincaré-Korn (Mengesha-Du 2014))

There exists a $\delta_{0}>0$ and a constant $C\left(\delta_{0}\right)>0$ such that for all $\delta \in\left(0, \delta_{0}\right.$] and $u \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$,

$$
\|u\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2} \leq C\left(\delta_{0}\right) \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} k_{\delta}(x-y) \frac{|D u(x, y)|^{2}}{|x-y|^{2}} d x d y
$$

NOTE: The projected difference vanishes under infinitesimal rigid displacements.

Theorem (Existence and Uniqueness for State Equation)

For any $g_{\delta} \in L^{2}$, there exists a unique $u_{\delta} \in X_{0}$ such that the state system

$$
B_{\delta}\left(u_{\delta}, w_{\delta}\right)=\left\langle g_{\delta}, w_{\delta}\right\rangle
$$

is satisfied for all $w_{\delta} \in X_{0}$. Furthermore, we have the stability estimate

$$
\left\|u_{\delta}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim\left\|g_{\delta}\right\|_{L^{2}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}
$$

for some constant independent of δ.

Cost functional assumptions

$$
I(u, g):=\int_{\Omega} F(x, u(x)) d x+\frac{\lambda}{2} \int_{\Omega} \Gamma(x)|g(x)|^{2} d x
$$

Here $Z_{\text {ad }}$ is a box constraint, and $F: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is such that:
(1) For all $v \in \mathbb{R}^{n}$ the mapping $x \mapsto F(x, v)$ is measurable;
(2) For all $x \in \Omega$ the mapping $v \mapsto F(x, v)$ is continuous and convex;
(3) There exist $c_{1}>0$ and $\ell \in L^{1}(\Omega)$

$$
|F(x, v)| \leq c_{1}|v|^{2}+\ell(x)
$$

for all $x \in \Omega, v \in \mathbb{R}^{n}$. Moreover, $\lambda \geq 0$, and $\Gamma \in L^{\infty}(\Omega)$ is positive a.e.

Well-posedness of optimal control problem

Theorem (Well-posedness)

For any $\delta>0$: there exists $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \times Z_{\text {ad }}$ minimizing

$$
I\left(u_{\delta}, g_{\delta}\right)=\int_{\Omega} F\left(x, u_{\delta}(x)\right) d x+\frac{\lambda}{2} \int_{\Omega} \Gamma(x)\left|g_{\delta}(x)\right|^{2} d x
$$

where $\overline{u_{\delta}} \in X_{0}$ solves

$$
B_{\delta}\left(u_{\delta}, v_{\delta}\right)=\int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) d x \quad \forall v_{\delta} \in X_{0}
$$

Furthermore, if F is strictly convex or $\lambda>0$, then the minimizer is unique.

Convergence of state equation as $\delta \rightarrow 0^{+}$

Local bi-linear form (of Navier-Lamé system of linear elasticity)

$$
B_{0}(u, v):=C(n) \int_{\Omega} \mathfrak{a}(x)\left(2\langle\operatorname{Sym}(\nabla u), \operatorname{Sym}(\nabla v)\rangle_{F}+\operatorname{div}(u) \operatorname{div}(v)\right) d x
$$

where $C(n):=\frac{1}{(n+2)(n+4)}$.

Theorem

Suppose $\left\{\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right)\right\}_{\delta>0}$ is the family of solutions to the non-local problem. Then, there is (\bar{u}, \bar{g}) such that $\overline{u_{\delta}} \rightarrow \bar{u}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ and $\overline{g_{\delta}} \rightharpoonup \bar{g}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Moreover, (\bar{u}, \bar{g}) solves the local optimal control problem.

Local state equation that (\bar{u}, \bar{g}) satisfies the constraint:

$$
B_{0}(u, v)=\int_{\Omega} g(x) \cdot v(x) d x
$$

Discrete Formulation

- Use continuous piecewise linears for states
- Use piecewise constants for controls
- Discrete optimal control problem is well-posed

Optimality conditions

Let S_{δ} denote solution operator for state equation
Non-local continuous optimality conditions (including adjoint):

$$
\begin{aligned}
\overline{u_{\delta}} & =S_{\delta} \overline{g_{\delta}} \\
\overline{p_{\delta}}=S_{\delta}^{*} F_{u}\left(\cdot, \overline{u_{\delta}}\right) & =S_{\delta} F_{u}\left(\cdot, \overline{u_{\delta}}\right) \\
\left\langle\overline{p_{\delta}}+\lambda \overline{g_{\delta}}, \gamma_{z}-\overline{g_{\delta}}\right\rangle_{L^{2}} & \geq 0, \quad \forall \gamma_{z} \in Z_{\mathrm{ad}} .
\end{aligned}
$$

Projection formulas:

$$
\begin{gathered}
\overline{g_{\delta}}(x)=\mathbb{P}_{Z_{\mathrm{ad}}}\left(-\frac{1}{\lambda} \overline{\bar{p}_{\delta}}(x)\right) \\
\overline{g_{\delta, h}}(x)=\mathbb{P}_{Z_{\mathrm{ad}}}\left(-\frac{1}{\lambda} \Pi_{0} \overline{p_{\delta, h}}(x)\right)
\end{gathered}
$$

Here Π_{0} is defined as $\Pi_{0} z:=f_{T} z$ on each triangle T in our mesh

Non-local problem convergence: summary

Theorem (Convergence)

In the setting of our problems,

$$
\begin{aligned}
& \left\|\overline{u_{\delta}}-\overline{u_{\delta, h}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim \omega(h)+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+ \\
& \quad \inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right] \times\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) ; \\
& \left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2} \lesssim \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2}+ \\
& \\
& \left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2} .
\end{aligned}
$$

$$
\left\|\overline{p_{\delta}}-\overline{p_{\delta, h}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim \omega(h)+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{p_{h}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}
$$

$$
+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}
$$

Non-local problem convergence: comments

- $X_{\delta, h}$ is our discrete non-local space
- Here $\omega(h)$ represents the approximation properties of the projection Π_{0}
- If our kernel is of fractional type, i.e. $k_{\delta}(\xi) \sim \frac{1}{|\xi|^{n+2 s}}$, then $\omega(h) \sim h^{s}$

Discrete analogue of convergence

Theorem (Discrete Convergence)

Suppose $\left\{\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right)\right\}_{\delta>0}$ is the family of solutions to the non-local discrete problem. Then, there is $\left(\overline{u_{h}}, \overline{g_{h}}\right)$ such that $\overline{u_{\delta, h}} \rightarrow \overline{u_{h}}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ and $\overline{g_{\delta, h}} \rightharpoonup \overline{g_{\delta}}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Moreover, $\left(\overline{u_{h}}, \overline{g_{h}}\right)$ solves the local discrete optimal control problem.

What is asymptotic compatibility?

- Introduced by X. Tian and Q. Du (2014)
- Originally developed for linear, non-local state equations

$$
\mathcal{L}_{\delta, h} u_{\delta, h}=f
$$

- Unconditional convergence of approximations in both discretization and horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions $\left\{u_{\delta, h}\right\}_{\delta, h>0}$ is asymptotically compatible in $\delta, h>0$ if for any sequences $\left\{\delta_{k}\right\}_{k=1}^{\infty},\left\{h_{k}\right\}_{k=1}^{\infty}$ with $\delta_{k}, h_{k} \rightarrow 0$, we have that $u_{\delta_{k}, h_{k}} \rightarrow u_{0}$ strongly in some Hilbert space norm, where u_{0} is the solution to a local, continuous problem.

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions $\left\{\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right)\right\}_{h>0, \delta>0}$ to the nonlocal discrete optimal control problem is asymptotically compatible in $\delta, h>0$ if for any sequences $\left\{\delta_{k}\right\}_{k=1}^{\infty},\left\{h_{k}\right\}_{k=1}^{\infty}$ with $\delta_{k}, h_{k} \rightarrow 0$, we have that $\overline{g_{\delta_{k}, h_{k}}} \rightharpoonup \bar{g}$ weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, and $\overline{u_{\delta_{k}, h_{k}}} \rightarrow \bar{u}$ strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Here $(\bar{u}, \bar{g}) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \times Z_{\text {ad }}$ denotes the optimal solution for the local continuous problem.

NOTE: In particular, $H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ is the limiting space of $X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$ as $\delta \rightarrow 0^{+}$

Asymptotic compatibility: result and notation

Theorem

Assume \mathfrak{A} is Lipschitz. Then, our family of optimal control problems is asymptotically compatible as $\delta, h \rightarrow 0^{+}$.

Define $A_{\delta}: X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \rightarrow\left(X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)\right)^{*}$ as the invertible operator such that

$$
\left\langle A_{\delta} u, v\right\rangle_{X_{0}^{*}, X_{0}}=B_{\delta}(u, v) \quad \forall u, v \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)
$$

define $A_{0}: H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow H^{-1}\left(\Omega ; \mathbb{R}^{n}\right)$ as the invertible operator such that

$$
\left\langle A_{0} u, v\right\rangle_{H^{-1}, H_{0}^{1}}=B_{0}(u, v) \quad \forall u, v \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)
$$

Proof of asymptotic compatibility

Needed preliminaries:
(1) Given a $v \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$, and $h_{k}, \delta_{k} \rightarrow 0$, we can find a sequence $v_{k} \in X_{\delta_{k}, h_{k}}$ such that $v_{k} \rightarrow v$ strongly in $H^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ as $k \rightarrow \infty$.
(2) For any sequences $\left\{\delta_{k}\right\}_{k=1}^{\infty},\left\{h_{k}\right\}_{k=1}^{\infty}$ with $\delta_{k}, h_{k} \rightarrow 0$, there exists a $C>0$ so that $\left\|\overline{u_{\delta_{k}, h_{k}}}\right\|_{X\left(\Omega_{\delta_{k}} ; \mathbb{R}^{n}\right)} \leq C$ uniformly in $k \in \mathbb{N}^{+}$.
(3) We have that $A_{\delta} u \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ and $\lim _{\delta \rightarrow 0^{+}}\left\|A_{\delta} u-A_{0} u\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}=0$ for each $u \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{n}\right)$.
Pick sub-sequence of $\left\{\left(\overline{u_{k}}, \overline{g_{k}}, \overline{p_{k}}\right)\right\}_{k=1}^{\infty}$ so there is a limit point $\left(u_{*}, g_{*}, p_{*}\right) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \times Z_{\text {ad }} \times H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ with convergence in appropriate topology

Proof of asymptotic compatibility (continued)

Step 1: Show that $B_{0}\left(u_{*}, \varphi\right)=\left\langle g_{*}, \varphi\right\rangle$ for all $\varphi \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$
Pick $\varphi \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{n}\right)$, let $w_{k}:=I_{k} \varphi$ (nodal interpolation), $w_{k} \rightarrow \varphi$ in $W^{1, \infty}\left(\Omega ; \mathbb{R}^{n}\right)$, then compute limit as $k \rightarrow \infty$ of

$$
B_{\delta_{k}}\left(\overline{u_{k}}, w_{k}\right)=\left\langle A_{\delta_{k}} \varphi, \overline{u_{k}}\right\rangle_{x_{0}^{*}, x_{0}}+\left\langle A_{\delta_{k}}\left(w_{k}-\varphi\right), \overline{u_{k}}\right\rangle_{x_{0}^{*}, x_{0}}=: I_{k}+I I_{k} .
$$

Step 2: Show that $B_{0}\left(\varphi, p_{*}\right)=\left\langle u_{*}, \varphi\right\rangle$ for all $\varphi \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ Strategy is identical to Step 1!
Step 3: Show that $g_{*}(x)=-\frac{1}{\lambda} \mathbb{P}_{Z_{\mathrm{dd}}}\left(p_{*}(x)\right)$
Recall that $\overline{g_{k}}(x)=-\frac{1}{\lambda} \mathbb{P}_{Z_{\mathrm{ad}}}\left(\Pi_{0} \overline{p_{k}}(x)\right)$, show $\Pi_{0} \overline{p_{k}} \rightarrow p_{*}$ strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$

Proof of asymptotic compatibility (continued)

Step 4: Unraveling

- Steps 1-3 and uniqueness of solutions to optimality system give $\bar{u}=u_{*}$, $\bar{g}=g_{*}$, and $\bar{p}=p_{*}$
- This is the limit point reached for any sub-sequence of original sequence
- Entire sequence of triples $\left\{\left(\overline{u_{k}}, \overline{g_{k}}, \overline{p_{k}}\right)\right\}_{k=1}^{\infty}$ converges to $(\bar{u}, \bar{g}, \bar{p})$

Recap and closing

- Showed existence and uniqueness of minimizers
- Considered behavior as $\delta \rightarrow 0^{+}$
- Discretized via FEMs
- Studied simultaneous limit as $\delta, h \rightarrow 0^{+}$

Thank you! Questions?

Auxiliary lemmas

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that

$$
\frac{c}{|\xi|^{n+2 s}} \leq \frac{k_{\delta}(\xi)}{|\xi|^{2}} \leq \frac{C}{|\xi|^{n+2 s}}
$$

holds for all $\xi \in B(0, \delta)$, for some $s \neq \frac{1}{2}$. Then necessarily $\overline{g_{\delta}} \in X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$.
Recall Fractional Sobolev Space (special case of our kernels):

$$
H^{s}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right):=\left\{\left.u\right|_{\Omega} \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right), \frac{|u(x)-u(y)|}{|x-y|^{\frac{n}{2}+s}} \in L^{2}\left(\Omega_{\delta} \times \Omega_{\delta}\right)\right\}
$$

Proof strategy:

- Mengesha-Du 2016 says that $H^{s}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)=X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$ here
- Use projection formula $\overline{g_{\delta}}(x)=-\frac{1}{\lambda} \mathbb{P}_{Z_{\mathrm{ad}}}\left(\overline{p_{\delta}}(x)\right)$
- This pointwise projection is continuous in H^{s} semi-norm but not X semi-norm!

Auxiliary lemmas (continued)

Lemma (Approximation)

If $w \in L^{2}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$, then

$$
\left\|\Pi_{0} w-w\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \leq \omega(h),
$$

where $\Pi_{0}: L^{2}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \rightarrow Z_{h}$ denotes the projection of a function onto the piecewise constants with respect to the given mesh. If in fact $w \in X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$ and k_{δ} satisfies the fractional inequality on $B(0, \delta)$ for some $s \neq \frac{1}{2}$, then

$$
\left\|\Pi_{0} w-w\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \lesssim h^{s}\|w\|_{x\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} .
$$

Back

Control convergence (continued)

Galerkin Approximations: $q_{\delta, h} \in X_{\delta, h}$ be the Galerkin approximation to $\overline{p_{\delta}}$, i.e., the solution of

$$
B_{\delta}\left(v_{\delta, h}, q_{\delta, h}\right)=\left\langle\overline{u_{\delta}}, v_{\delta, h}\right\rangle \quad \forall v_{\delta, h} \in X_{\delta, h}
$$

$U_{\delta, h} \in X_{\delta, h}$ for $\overline{u_{\delta}}:$

$$
B_{\delta}\left(U_{\delta, h}, v_{\delta, h}\right)=\left\langle\overline{g_{\delta}}, v_{\delta, h}\right\rangle \quad \forall v_{\delta, h} \in X_{\delta, h}
$$

$r_{\delta, h} \in X_{\delta, h}$ solves

$$
B_{\delta}\left(v_{\delta, h}, r_{\delta, h}\right)=\left\langle U_{\delta, h}, v_{\delta, h}\right\rangle \quad \forall v_{\delta, h} \in X_{\delta, h}
$$

- Back

Control convergence (continued)

Let $I_{1}:=\left\langle\overline{p_{\delta}}-\overline{p_{\delta, h}}, \overline{g_{\delta, h}}-\overline{g_{\delta}}\right\rangle$ and $I_{2}:=\left\langle\overline{p_{\delta, h}}+\lambda \overline{g_{\delta, h}}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle$. Using optimality conditions gives

$$
\begin{gathered}
\lambda\left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2} \leq I_{1}+I_{2} . \\
I_{1}=\left\langle\overline{p_{\delta}}-q_{\delta, h}, \overline{g_{\delta, h}}-\overline{g_{\delta}}\right\rangle+\left\langle q_{\delta, h}-r_{\delta, h}, \overline{g_{\delta, h}}-\overline{g_{\delta}}\right\rangle+\left\langle r_{\delta, h}-\overline{p_{\delta, h}}, \overline{g_{\delta, h}}-\overline{g_{\delta}}\right\rangle=: \\
I_{1,1}+I_{1,2}+I_{1,3} .
\end{gathered}
$$

By use of Galerkin approximations, find that $l_{1,3} \leq 0$ and

$$
\begin{aligned}
& I_{1,1} \lesssim\left\|\overline{g_{\delta, h}}-\overline{g_{\delta}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} ; \\
& I_{1,2} \lesssim\left\|\overline{\delta_{\delta, h}}-\overline{g_{\delta}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)} \inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} .
\end{aligned}
$$

Control convergence (continued)

By Young's Inequality,

$$
\begin{aligned}
I_{1} \leq & \frac{\lambda}{3}\left\|\overline{g_{\delta, h}}-\overline{g_{\delta}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}+C\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right] \times\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)\right)^{2}+ \\
& C\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right] \times\left(\Omega_{\left.\delta ; \mathbb{R}^{n}\right)}\right)^{2}\right.
\end{aligned}
$$

Control convergence (continued)

Now we write I_{2} as

$$
\begin{aligned}
& \left\langle\overline{p_{\delta, h}}+\lambda \overline{g_{\delta, h},}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle=\left\langle\overline{p_{\delta}}+\lambda \overline{g_{\delta}}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle+\lambda\left\langle\overline{g_{\delta, h}}-\overline{g_{\delta}}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle+ \\
& \left\langle\overline{p_{\delta, h}}-r_{\delta, h}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle+\left\langle r_{\delta, h}-q_{\delta, h}, \Pi_{0} \overline{g_{\delta}}-\overline{g_{\delta}}\right\rangle+\left\langle q_{\delta, h}-\overline{p_{\delta}}, \Pi_{2,3}+\overline{g_{\delta}}\right\rangle=: \\
& I_{2,1}+I_{2,2}+I_{2,5} .
\end{aligned}
$$

Control convergence (continued)

Use that $\Pi_{0}\left(\overline{p_{\delta}}+\lambda \overline{g_{\delta}}\right)=0$ to estimate $I_{2,1}$ as

$$
I_{2,1} \leq \omega(h) .
$$

For $I_{2,2}$, use Cauchy and stability:

$$
I_{2,2} \leq \frac{\lambda}{3}\left\|\overline{g_{\delta, h}}-\overline{g_{\delta}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}+\omega(h),
$$

Control convergence (continued)

For $I_{2,3}$, use Galerkin approximations and the stabilty:

$$
I_{2,3} \leq \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2}
$$

For $I_{2,4}$ and $I_{2,5}$, use Ceá's lemma and Cauchy:

$$
\begin{aligned}
& I_{2,4} \leq \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2} ; \\
& I_{2,5} \leq \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta,} ; \mathbb{R}^{n}\right)}\right)^{2} .
\end{aligned}
$$

Control convergence (continued)

Use Young's Inequality and combine all the estimates to get

$$
\begin{aligned}
\frac{\lambda}{3}\left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2} \lesssim & \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2}+ \\
& \left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2} .
\end{aligned}
$$

Back

