Asymptotic Compatibility of Optimal Control Problems in Peridynamics

Joshua Siktar
(joint with Tadele Mengesha and Abner J. Salgado)
2023 Fall Finite Element Circus (The University of Notre Dame)
Thanks to NSF grant 2111228 for financial support

October 2023

THE UNIVERSITY OF
TENNESSEE KNOXVILLE

MATHEMATICS

Problem statement

Find $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \in X_{0} \times Z_{\text {ad }}$ such that

$$
I\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right)=\min _{g_{\delta} \in L^{2}, u_{\delta} \in X_{0}}\left\{\int_{\Omega} F\left(x, u_{\delta}(x)\right) d x+\frac{\lambda}{2} \int_{\Omega} \Gamma(x)\left|g_{\delta}(x)\right|^{2} d x\right\}
$$

subject to the strongly coupled system of equations

$$
\mathcal{L}_{\delta} u_{\delta}=g_{\delta}
$$

- $\delta \geq 0$ is the degree of non-locality (the horizon parameter in peridynamics);
- $\overline{g_{\delta}}$ is a [vector-valued] external force;
- $\overline{u_{\delta}}$ represents the [vector-valued] displacement.
- \mathcal{L}_{δ} is a non-local operator, exact formula to be given.

Goals

- Show existence and uniqueness of minimizers
- Consider behavior as $\delta \rightarrow 0^{+}$
- Discretize via FEMs
- Study simultaneous limit as $\delta, h \rightarrow 0^{+}$(asymptotic compatibility)

Bilinear forms

Bilinear form induces non-local state equation:

$$
B_{\delta}(u, v):=\iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x, y) k_{\delta}(x-y) \frac{D u(x, y)}{|x-y|} \frac{D v(x, y)}{|x-y|} d x d y=\int_{\Omega} g(x) \cdot v(x) d x
$$

- \mathfrak{A} is positive, bounded, symmetric
- k_{δ} a kernel with suitable properties
- $D u$ is projected difference, $D u(x, y):=(u(x)-u(y)) \cdot \frac{x-y}{|x-y|}$

State equation

Our function space is based on B_{δ} :

$$
X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right):=\left\{\left.u\right|_{\Omega} \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right), B_{\delta}(u, u)<\infty\right\}
$$

Version with zero non-local boundary data:

$$
X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right):=\left\{u \in X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right), u=0 \text { in } \Omega_{\delta} \backslash \Omega\right\}
$$

Cost functional assumptions

$$
I(u, g):=\int_{\Omega} F(x, u(x)) d x+\frac{\lambda}{2}\|g\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}
$$

Here $Z_{\text {ad }}$ is a box constraint, and $F: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is such that:
(1) For all $v \in \mathbb{R}^{n}$ the mapping $x \mapsto F(x, v)$ is measurable;
(2) For all $x \in \Omega$ the mapping $v \mapsto F(x, v)$ is continuous and convex;
(3) There exist $c_{1}>0$ and $\ell \in L^{1}(\Omega)$

$$
|F(x, v)| \leq c_{1}|v|^{2}+\ell(x)
$$

for all $x \in \Omega, v \in \mathbb{R}^{n}$. Moreover, $\lambda \geq 0$

Well-posedness of optimal control problem

Theorem (Well-posedness)

For any $\delta>0$: there exists $\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right) \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \times Z_{\text {ad }}$ minimizing

$$
I\left(u_{\delta}, g_{\delta}\right)=\int_{\Omega} F\left(x, u_{\delta}(x)\right) d x+\frac{\lambda}{2}\left\|g_{\delta}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2}
$$

where $\overline{u_{\delta}} \in X_{0}$ solves

$$
B_{\delta}\left(u_{\delta}, v_{\delta}\right)=\int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) d x \quad \forall v_{\delta} \in X_{0}
$$

Furthermore, if F is strictly convex or $\lambda>0$, then the minimizer is unique.

Convergence of state equation as $\delta \rightarrow 0^{+}$

Local bilinear form (of Navier-Lamé system of linear elasticity)

$$
B_{0}(u, v):=C(n) \int_{\Omega} \mathfrak{a}(x)\left(2\langle\operatorname{Sym}(\nabla u), \operatorname{Sym}(\nabla v)\rangle_{F}+\operatorname{div}(u) \operatorname{div}(v)\right) d x
$$

where $C(n):=\frac{1}{(n+2)(n+4)}$.

Theorem

Suppose $\left\{\left(\overline{u_{\delta}}, \overline{g_{\delta}}\right)\right\}_{\delta>0}$ is the family of solutions to the non-local problem. Then, there is (\bar{u}, \bar{g}) such that $\overline{u_{\delta}} \rightarrow \bar{u}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ and $\overline{g_{\delta}} \rightharpoonup \bar{g}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Moreover, (\bar{u}, \bar{g}) solves the local optimal control problem.

Local state equation that (\bar{u}, \bar{g}) satisfies the constraint:

$$
B_{0}(u, v)=\int_{\Omega} g(x) \cdot v(x) d x
$$

Discrete Formulation

- Use continuous piecewise linears for states
- Use piecewise constants for controls
- Discrete optimal control problem is well-posed

Non-local problem convergence: summary

Theorem (Convergence)

In the setting of our problems,

$$
\begin{aligned}
& \left\|\overline{u_{\delta}}-\overline{u_{\delta, h}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim \omega(h)+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+ \\
& \quad \inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right] \times\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) ; \\
& \left\|\overline{g_{\delta}}-\overline{g_{\delta, h}}\right\|_{L^{2}\left(\Omega ; \mathbb{R}^{n}\right)}^{2} \lesssim \omega(h)^{2}+\left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2}+ \\
& \\
& \left(\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}\right)^{2} .
\end{aligned}
$$

$$
\left\|\overline{p_{\delta}}-\overline{p_{\delta, h}}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)} \lesssim \omega(h)+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{p_{h}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left\|\widehat{u_{\delta}}-v_{\delta, h}\right\|_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}
$$

$$
+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{u_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}+\inf _{v_{\delta, h} \in X_{\delta, h}}\left[\overline{p_{\delta}}-v_{\delta, h}\right]_{X\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)}
$$

What is asymptotic compatibility?

- Introduced by X. Tian and Q. Du (2014)
- Originally developed for the linear, non-local state equation

$$
\mathcal{L}_{\delta, h} u_{\delta, h}=f
$$

- Unconditional convergence of approximations in both discretization and horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions $\left\{u_{\delta, h}\right\}_{\delta, h>0}$ is asymptotically compatible in $\delta, h>0$ if for any sequences $\left\{\delta_{k}\right\}_{k=1}^{\infty},\left\{h_{k}\right\}_{k=1}^{\infty}$ with $\delta_{k}, h_{k} \rightarrow 0$, we have that $u_{\delta_{k}, h_{k}} \rightarrow u_{0}$ strongly in some Hilbert space norm, where u_{0} is the solution to a local, continuous problem.

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions $\left\{\left(\overline{u_{\delta, h}}, \overline{g_{\delta, h}}\right)\right\}_{h>0, \delta>0}$ to the nonlocal discrete optimal control problem is asymptotically compatible in $\delta, h>0$ if for any sequences $\left\{\delta_{k}\right\}_{k=1}^{\infty},\left\{h_{k}\right\}_{k=1}^{\infty}$ with $\delta_{k}, h_{k} \rightarrow 0$, we have that $\overline{g_{\delta_{k}, h_{k}}} \rightharpoonup \bar{g}$ weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, and $\overline{u_{\delta_{k}, h_{k}}} \rightarrow \bar{u}$ strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Here $(\bar{u}, \bar{g}) \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \times Z_{\text {ad }}$ denotes the optimal solution for the local continuous problem.

NOTE: In particular, $H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ is the limiting space of $X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)$ as $\delta \rightarrow 0^{+}$

Asymptotic compatibility: result and notation

Theorem

Assume \mathfrak{A} is Lipschitz. Then, our family of optimal control problems is asymptotically compatible as $\delta, h \rightarrow 0^{+}$.

Define $A_{\delta}: X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right) \rightarrow\left(X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)\right)^{*}$ as the invertible operator such that

$$
\left\langle A_{\delta} u, v\right\rangle_{X_{0}^{*}, X_{0}}=B_{\delta}(u, v) \quad \forall u, v \in X_{0}\left(\Omega_{\delta} ; \mathbb{R}^{n}\right)
$$

define $A_{0}: H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow H^{-1}\left(\Omega ; \mathbb{R}^{n}\right)$ as the invertible operator such that

$$
\left\langle A_{0} u, v\right\rangle_{H^{-1}, H_{0}^{1}}=B_{0}(u, v) \quad \forall u, v \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)
$$

Proof of asymptotic compatibility

Step 0: Pick sub-sequence $\left\{\left(\overline{u_{k}}, \overline{g_{k}}, \overline{p_{k}}\right)\right\}_{k=1}^{\infty} \rightarrow\left(u_{*}, g_{*}, p_{*}\right)$, a triple in $H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \times Z_{\text {ad }} \times H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$
Step 1: Show that $B_{0}\left(u_{*}, \varphi\right)=\left\langle g_{*}, \varphi\right\rangle$ for all $\varphi \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ Pick $\varphi \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{n}\right)$, let $w_{k}:=I_{k} \varphi$ (nodal interpolation), $w_{k} \rightarrow \varphi$ in $W^{1, \infty}\left(\Omega ; \mathbb{R}^{n}\right)$, then compute limit as $k \rightarrow \infty$ of

$$
B_{\delta_{k}}\left(\overline{u_{k}}, w_{k}\right)=\left\langle A_{\delta_{k}} \varphi, \overline{u_{k}}\right\rangle_{x_{0}^{*}, x_{0}}+\left\langle A_{\delta_{k}}\left(w_{k}-\varphi\right), \overline{u_{k}}\right\rangle_{x_{0}^{*}, x_{0}}=: I_{k}+I I_{k} .
$$

Step 2: Show that $B_{0}\left(\varphi, p_{*}\right)=\left\langle u_{*}, \varphi\right\rangle$ for all $\varphi \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ Strategy is identical to Step 1!

Proof of asymptotic compatibility (continued)

Step 3: Show that $g_{*}(x)=\mathbb{P}_{Z_{\text {ad }}}\left(-\frac{1}{\lambda} p_{*}(x)\right)$
Recall that $\overline{g_{k}}(x)=\mathbb{P}_{z_{\mathrm{ad}}}\left(-\frac{1}{\lambda} \Pi_{0} \overline{p_{k}}(x)\right)$, show $\Pi_{0} \overline{p_{k}} \rightarrow p_{*}$ strongly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$
Step 4: Unraveling

- Steps 1-3 and uniqueness of solutions to optimality system give $\bar{u}=u_{*}$, $\bar{g}=g_{*}$, and $\bar{p}=p_{*}$
- This is the limit point reached for any sub-sequence of original sequence
- Entire sequence of triples $\left\{\left(\overline{u_{k}}, \overline{g_{k}}, \overline{p_{k}}\right)\right\}_{k=1}^{\infty}$ converges to ($\bar{u}, \bar{g}, \bar{p}$)

Recap and closing

- Showed existence and uniqueness of minimizers
- Considered behavior as $\delta \rightarrow 0^{+}$
- Discretized via FEMs
- Studied simultaneous limit as $\delta, h \rightarrow 0^{+}$

Thank you! Questions?

