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Problem Formulation

Problem statement

Find (uδ, gδ) ∈ X0 × Zad such that

I(uδ, gδ) = min
gδ∈L2,uδ∈X0

{ˆ
Ω

F (x , uδ(x))dx + λ

2

ˆ
Ω

Γ(x)|gδ(x)|2dx
}
,

subject to the strongly coupled system of equations

Lδuδ = gδ

δ ≥ 0 is the degree of non-locality (the horizon parameter in peridynamics);
gδ is a [vector-valued] external force;
uδ represents the [vector-valued] displacement.
Lδ is a non-local operator, exact formula to be given.



Problem Formulation

Goals

Show existence and uniqueness of minimizers
Consider behavior as δ → 0+

Discretize via FEMs
Study simultaneous limit as δ, h→ 0+ (asymptotic compatibility)



Notation and Functional Setting

Bilinear forms

Bilinear form induces non-local state equation:

Bδ(u, v) :=
¨
Dδ

A(x , y)kδ(x − y)Du(x , y)
|x − y |

Dv(x , y)
|x − y | dxdy =

ˆ
Ω

g(x) · v(x)dx

A is positive, bounded, symmetric
kδ a kernel with suitable properties
Du is projected difference, Du(x , y) := (u(x)− u(y)) · x−y

|x−y |



Notation and Functional Setting

State equation

Our function space is based on Bδ :

X (Ωδ;Rn) := {u|Ω∈ L2(Ω;Rn),Bδ(u, u) <∞}

Version with zero non-local boundary data:

X0(Ωδ;Rn) := {u ∈ X (Ωδ;Rn), u = 0 in Ωδ \ Ω}



Well-posedness

Cost functional assumptions

I(u, g) :=
ˆ

Ω
F (x , u(x))dx + λ

2 ‖g‖
2
L2(Ω;Rn)

Here Zad is a box constraint, and F : Ω× Rn → R is such that:
1 For all v ∈ Rn the mapping x 7→ F (x , v) is measurable;
2 For all x ∈ Ω the mapping v 7→ F (x , v) is continuous and convex;
3 There exist c1 > 0 and ` ∈ L1(Ω)

|F (x , v)| ≤ c1|v |2+`(x)

for all x ∈ Ω, v ∈ Rn. Moreover, λ ≥ 0



Well-posedness

Well-posedness of optimal control problem

Theorem (Well-posedness)
For any δ > 0: there exists (uδ, gδ) ∈ X0(Ωδ;Rn)× Zad minimizing

I(uδ, gδ) =
ˆ

Ω
F (x , uδ(x))dx + λ

2 ‖gδ‖
2
L2(Ω;Rn)

where uδ ∈ X0 solves

Bδ(uδ, vδ) =
ˆ

Ω
gδ(x) · vδ(x)dx ∀vδ ∈ X0

Furthermore, if F is strictly convex or λ > 0, then the minimizer is unique.



Convergence of state equation as δ → 0+

Convergence of state equation as δ → 0+

Local bilinear form (of Navier-Lamé system of linear elasticity)

B0(u, v) := C(n)
ˆ

Ω
a(x)(2〈Sym(5u),Sym(5v)〉F + div(u)div(v))dx

where C(n) := 1
(n+2)(n+4) .

Theorem

Suppose {(uδ, gδ)}δ>0 is the family of solutions to the non-local problem. Then,
there is (u, g) such that uδ → u in L2(Ω;Rn) and gδ ⇀ g in L2(Ω;Rn). Moreover,
(u, g) solves the local optimal control problem.

Local state equation that (u, g) satisfies the constraint:

B0(u, v) =
ˆ

Ω
g(x) · v(x)dx



Discretization

Discrete Formulation

Use continuous piecewise linears for states
Use piecewise constants for controls
Discrete optimal control problem is well-posed



Discretization

Non-local problem convergence: summary

Theorem (Convergence)
In the setting of our problems,

‖uδ − uδ,h‖X(Ωδ ;Rn) . ω(h) + inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(Ωδ ;Rn)+

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn);

‖gδ − gδ,h‖2L2(Ω;Rn) . ω(h)2 +
(

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn)

)2
+(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.

‖pδ−pδ,h‖X(Ωδ ;Rn) . ω(h)+ inf
vδ,h∈Xδ,h

‖p̂h−vδ,h‖X(Ωδ ;Rn)+ inf
vδ,h∈Xδ,h

‖ûδ−vδ,h‖X(Ωδ ;Rn)

+ inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn).

NOTE: Here ω(h) represents the approximation properties of the projection Π0



Asymptotic compatibility

What is asymptotic compatibility?

Introduced by X. Tian and Q. Du (2014)
Originally developed for the linear, non-local state equation

Lδ,huδ,h = f
Unconditional convergence of approximations in both discretization and
horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions {uδ,h}δ,h>0 is
asymptotically compatible in δ, h > 0 if for any sequences {δk}∞k=1, {hk}∞k=1
with δk , hk → 0, we have that uδk ,hk → u0 strongly in some Hilbert space norm,
where u0 is the solution to a local, continuous problem.

uδ,h uh

uδ u

h→0+ k→∞

δ→0+

h→0+

δ→0+



Asymptotic compatibility

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control )

We say that the family of solutions {(uδ,h, gδ,h)}h>0,δ>0 to the nonlocal discrete
optimal control problem is asymptotically compatible in δ, h > 0 if for any
sequences {δk}∞k=1, {hk}∞k=1 with δk , hk → 0, we have that gδk ,hk ⇀ g weakly in
L2(Ω;Rn), and uδk ,hk → u strongly in L2(Ω;Rn). Here (u, g) ∈ H1

0 (Ω;Rn)× Zad
denotes the optimal solution for the local continuous problem.

NOTE: In particular, H1
0 (Ω;Rn) is the limiting space of X0(Ωδ;Rn) as δ → 0+

(uδ,h, gδ,h) (uh, gh)

(uδ, gδ) (u, g)

h→0+ k→∞

δ→0+

h→0+

δ→0+



Asymptotic compatibility

Asymptotic compatibility: result and notation

Theorem
Assume A is Lipschitz. Then, our family of optimal control problems is
asymptotically compatible as δ, h→ 0+.

Define Aδ : X0(Ωδ;Rn)→ (X0(Ωδ;Rn))∗ as the invertible operator such that

〈Aδu, v〉X∗0 ,X0 = Bδ(u, v) ∀u, v ∈ X0(Ωδ;Rn);

define A0 : H1
0 (Ω;Rn)→ H−1(Ω;Rn) as the invertible operator such that

〈A0u, v〉H−1,H1
0

= B0(u, v) ∀u, v ∈ H1
0 (Ω;Rn).



Asymptotic compatibility

Proof of asymptotic compatibility

Step 0: Pick sub-sequence {(uk , gk , pk)}∞k=1 → (u∗, g∗, p∗), a triple in
H1
0 (Ω;Rn)× Zad × H1

0 (Ω;Rn)

Step 1: Show that B0(u∗, ϕ) = 〈g∗, ϕ〉 for all ϕ ∈ H1
0 (Ω;Rn)

Pick ϕ ∈ C∞0 (Ω;Rn), let wk := Ikϕ (nodal interpolation), wk → ϕ in
W 1,∞(Ω;Rn), then compute limit as k →∞ of

Bδk (uk ,wk) = 〈Aδkϕ, uk〉X∗0 ,X0 + 〈Aδk (wk − ϕ), uk〉X∗0 ,X0 =: Ik + IIk .

Step 2: Show that B0(ϕ, p∗) = 〈u∗, ϕ〉 for all ϕ ∈ H1
0 (Ω;Rn)

Strategy is identical to Step 1!



Asymptotic compatibility

Proof of asymptotic compatibility (continued)

Step 3: Show that g∗(x) = PZad

(
− 1
λp∗(x)

)
Recall that gk(x) = PZad

(
− 1
λΠ0pk(x)

)
, show Π0pk → p∗ strongly in L2(Ω;Rn)

Step 4: Unraveling
Steps 1-3 and uniqueness of solutions to optimality system give u = u∗,
g = g∗, and p = p∗
This is the limit point reached for any sub-sequence of original sequence
Entire sequence of triples {(uk , gk , pk)}∞k=1 converges to (u, g , p)



Asymptotic compatibility

Recap and closing

Showed existence and uniqueness of minimizers
Considered behavior as δ → 0+

Discretized via FEMs
Studied simultaneous limit as δ, h→ 0+

Thank you! Questions?
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