An Optimal Control Problem in Peridynamics: Analysis and Discretization

Joshua Siktar jsiktar@vols.utk.edu

University of Pittsburgh PDE & Analysis Seminar

October 2, 2023

DEPARTMENT OF MATHEMATICS

- Problem Formulation
- Overview and Notation
- Well-posedness
- ${\color{black} {0 \atop 0}}$ Convergence of state equation as $\delta
 ightarrow 0^+$
- **Discretization**
- 6 Asymptotic compatibility

Outline

Problem Formulation

- 2 Overview and Notation
- 3 Well-posedness
- 4) Convergence of state equation as $\delta
 ightarrow 0^+$
- **Discretization**
- 6 Asymptotic compatibility

- Thanks to my co-advisors Abner Salgado and Tadele Mengesha for their continued mentorship
- Thanks to Armin Schikorra for the talk invitation
- Thanks to NSF grant 2111228 for financial support

Find $(\overline{u_{\delta}},\overline{g_{\delta}})\in X_0 imes Z_{\mathsf{ad}}$ such that

$$I(\overline{u_{\delta}},\overline{g_{\delta}}) = \min_{g_{\delta} \in L^{2}, u_{\delta} \in X_{0}} \left\{ \int_{\Omega} F(x,u_{\delta}(x)) dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x) |g(x)|^{2} dx \right\},$$

over pairs $(u_{\delta}, g_{\delta}) \in X_0 \times Z_{\mathsf{ad}}$ that satisfy some state equation (exact form TBD)

$$B_{\delta}(u_{\delta}, w_{\delta}) \;=\; \int_{\Omega} g_{\delta}(x) \cdot w_{\delta}(x), \; \forall w_{\delta} \in X_0.$$

where $\delta \ge 0$ is the degree of non-locality. Here $\overline{g_{\delta}}$ is an external force and $\overline{u_{\delta}}$ represents the displacement

Sample Candidate integrand

Example:

$$F(x, u(x)) = |u(x) - u_{\mathrm{des}}(x)|^2$$

where $u_{\rm des}$ is the optimal shape of the material in space to fit a predetermined hole as closely as possible

- Show existence and uniqueness of minimizers
- ${\rm \circ}\,$ Consider behavior as $\delta \rightarrow 0^+$
- Discretize via FEA
- Study simultaneous limit as $\delta, h \rightarrow 0^+$ (asymptotic compatibility)

Outline

Problem Formulation

Overview and Notation

- 3 Well-posedness
- 4) Convergence of state equation as $\delta
 ightarrow 0^+$
- Discretization
- 6 Asymptotic compatibility

For our problem the nonlocal operator is

$$\mathcal{L}_{\delta} u(x) = \frac{1}{2} \int_{\Omega_{\delta}} \mathfrak{A}(x, y) k_{\delta}(|x - y|) \frac{Du(x, y)}{|x - y|} \frac{y - x}{|x - y|} dy$$

Nonlocal equations [or systems] take the form

$$\begin{cases} \mathcal{L}_{\delta} u = g, x \in \Omega \\ u = 0, x \in \Omega_{\delta} \setminus \Omega \end{cases}$$

Common in solid state mechanics, including peridynamics

Motivation and Origins (continued)

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals over derivatives, attributed to Stewart A. Silling

Features:

- Exchanges derivatives in continuum models for integrals (helps address crack formation)
- Treats particles as having a bond between them (bond-based model)
- Range of interaction parameterized by δ , called **horizon**
- Material parameters represented by a(x) (e.g., density)
- Operator is elliptic (not parabolic or hyperbolic)

Notation

- Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, $\Omega_{\delta} := \Omega \cup \{x, \operatorname{dist}(x, \partial \Omega) < \delta\}$
- $\Omega_{\delta} \setminus \Omega$ is non-local boundary
- $\mathcal{D}_{\delta} := (\Omega \times \Omega_{\delta}) \cup (\Omega_{\delta} \times \Omega)$
- Projected difference: $Du(x, y) := \frac{(u(x)-u(y))\cdot(x-y)}{|x-y|}$, nonlocal linearized strain (for vector-valued functions)
- Our material coefficient function is

$$\mathfrak{A}(x,y) := \frac{\mathfrak{a}(x) + \mathfrak{a}(y)}{2},$$

where there exist $a_{\min}, a_{\max} > 0$ so $a_{\min} \leq \mathfrak{a} \leq a_{\max}$ on Ω_{δ} .

Kernel sequence $\{k_{\delta}\}_{\delta>0}$ radial, integrable, non-negative, supported in $B(0, \delta)$, $k_{\delta}(r)r^{-2}$ is nonincreasing, and

$$\lim_{\delta\to 0^+}\int_{\mathbb{R}^n}k_{\delta}(\xi)d\xi = \delta_0$$

Also, for all $\delta > 0$:

$$egin{aligned} &\int_{\mathbb{R}^n} k_\delta(\xi) d\xi &= 1 \ &\lim_{t o\infty} \int_{\mathbb{R}^n\setminus B(0,t)} k_\delta(\xi) d\xi = 0 \end{aligned}$$

Nonlocal bi-linear form:

$$B_{\delta}(u,v) := \frac{1}{2} \iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x,y) k_{\delta}(x-y) \frac{Du(x,y)}{|x-y|} \frac{Dv(x,y)}{|x-y|} dx dy$$

Local bi-linear form:

$$B_0(u,v) := C(n) \int_{\Omega} \mathfrak{a}(x) (2\langle \operatorname{Sym}(\bigtriangledown u), \operatorname{Sym}(\bigtriangledown v) \rangle_F + \operatorname{div}(u) \operatorname{div}(v)) dx,$$

with $C(n) = \frac{1}{(n+2)(n+4)}$

Inner products denoted $\langle\cdot,\cdot\rangle_{Y};$ $L^{2}\text{-inner}$ product denoted $\langle\cdot,\cdot\rangle$

Our function space is based on B_{δ} :

$$X(\Omega_{\delta};\mathbb{R}^n):=\{u|_{\Omega}\in L^2(\Omega;\mathbb{R}^n), B_{\delta}(u,u)<\infty\}$$

Version with zero non-local boundary data:

$$X_0(\Omega_{\delta};\mathbb{R}^n):=\{u\in X(\Omega_{\delta};\mathbb{R}^n), u=0 \text{ in } \Omega_{\delta}\setminus\Omega\}$$

Cost Functional Assumptions

$$I(u,g) := \int_{\Omega} F(x,u(x))dx + \frac{\lambda}{2}\int_{\Omega} \Gamma(x)|g(x)|^2dx.$$

Here Z_{ad} is a nonempty, closed, convex, and bounded subset of $L^2(\Omega; \mathbb{R}^n)$, taking the form

$$Z_{\mathsf{ad}} = \{ z \in L^2(\Omega; \mathbb{R}^n), a \leq z \leq b \}$$

Here $[a]_i \leq [b]_i$ for all $i \in \{1, 2, ..., n\}$ with $a = ([a]_1, ..., [a]_n)$ and $b = ([b]_1, ..., [b]_n)$ being vector fields in $L^2(\Omega; \mathbb{R}^n)$, $\lambda \geq 0$, and $\Gamma \in L^{\infty}(\Omega)$ is positive.

Cost Functional Assumptions (continued)

The integrand $F: \Omega \times \mathbb{R}^n \to \mathbb{R}$ possesses the following properties:

- For all $v \in \mathbb{R}^n$ the mapping $x \mapsto F(x, v)$ is measurable;
- **2** For all $x \in \Omega$ the mapping $v \mapsto F(x, v)$ is continuous and convex;
- There exist $c_1 > 0$ and $\ell \in L^1(\Omega)$

$$|F(x,v)| \leq c_1 |v|^2 + \ell(x)$$

for all $x \in \Omega$, $v \in \mathbb{R}^n$.

$$\begin{split} \mathcal{A}^{\delta} &:= \{ (v, f) \in X_0(\Omega_{\delta}; \mathbb{R}^n) \times Z_{\mathsf{ad}}, \\ v \text{ solves state system with right hand side } f \text{ for any } w \in X_0(\Omega_{\delta}; \mathbb{R}^n) \} \end{split}$$

$$\mathcal{A}^{\mathsf{loc}} := \{ (v, f) \in H^1_0(\Omega; \mathbb{R}^n) \times Z_{\mathsf{ad}}, \}$$

v solves local BVP for any $w \in H^1_0(\Omega; \mathbb{R}^n)$

Outline

D Problem Formulation

2 Overview and Notation

Well-posedness

4) Convergence of state equation as $\delta
ightarrow 0^+$

Discretization

6 Asymptotic compatibility

- $(X(\Omega_{\delta}; \mathbb{R}^n), \|\cdot\|_X)$ and $(X_0(\Omega_{\delta}; \mathbb{R}^n), \|\cdot\|_X)$ are Hilbert
- Can extend $u \in X_0(\Omega_{\delta}; \mathbb{R}^n)$ by zero to any open set $B \supset \Omega_{\delta}$, including \mathbb{R}^n .
- $H^1(\Omega_{\delta}; \mathbb{R}^n) \hookrightarrow X(\Omega_{\delta}; \mathbb{R}^n)$
- $X(\Omega_{\delta}; \mathbb{R}^n) \Subset L^2(\Omega_{\delta}; \mathbb{R}^n)$

Nonlocal Poincaré Inequality

Proposition (Nonlocal Poincaré-Korn (Mengesha-Du 2014))

There exists a $\delta_0 > 0$ and a constant $C(\delta_0) > 0$ such that for all $\delta \in (0, \delta_0]$ and $u \in X_0(\Omega_{\delta}; \mathbb{R}^n)$,

$$\|u\|_{L^2(\Omega;\mathbb{R}^n)}^2 \leq C(\delta_0) \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} \frac{k_{\delta}(x-y)|Du(x,y)|^2}{|x-y|^2} dx dy.$$

Notes:

- The assumption of $k_{\delta}(r)r^{-2}$ being non-increasing is needed in the proof
- The projected difference vanishes under infinitesimal rigid displacements

State equation is well-posed!

Theorem (Existence and Uniqueness for State Equation)

For any $g_{\delta} \in L^2$, there exists a unique $u \in X_0$ such that the state system

$$B_{\delta}(u_{\delta}, w_{\delta}) = \langle g_{\delta}, w_{\delta} \rangle$$

is satisfied for all $w_{\delta} \in X_0$. Furthermore, we have the stability estimate

 $\|u_{\delta}\|_{X(\Omega_{\delta};\mathbb{R}^n)} \lesssim \|g_{\delta}\|_{X(\Omega_{\delta};\mathbb{R}^n)^*}$

for some constant independent of δ .

Well-posedness

Minimization Problem

Goal: find $(\overline{u_{\delta}}, \overline{g_{\delta}}) \in X_0 \times L^2$ minimizing

$$I(u_{\delta},g_{\delta}) = \int_{\Omega} F(x,u_{\delta}(x)) dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x) |g_{\delta}(x)|^2 dx$$

subject to: $\lambda \ge 0$, $g_{\delta} \in Z_{ad} \subset L^2$ and $(u_{\delta}, g_{\delta}) \in X_0 \times L^2$ solving

$$B_{\delta}(u_{\delta},v_{\delta}) = \int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) dx \quad \forall v_{\delta} \in X_{0}$$

Well-posedness of optimal control problem

Theorem (Well-posedness)

There exists $(\overline{u_{\delta}}, \overline{g_{\delta}}) \in X_0(\Omega_{\delta}; \mathbb{R}^n) \times Z_{ad}$ minimizing

$$I(u_{\delta},g_{\delta}) = \int_{\Omega} F(x,u_{\delta}(x)) dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x) |g_{\delta}(x)|^2 dx$$

where $\overline{u_{\delta}} \in X_0$ solves

$$B_{\delta}(u_{\delta},v_{\delta}) = \int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) dx \quad \forall v_{\delta} \in X_{0}$$

Furthermore, if F is strictly convex or $\lambda > 0$, then the minimizer is unique.

Use compactness to apply direct method

Outline

- **D** Problem Formulation
- 2 Overview and Notation
- 3 Well-posedness

4 Convergence of state equation as $\delta \rightarrow 0^+$

- **Discretization**
- 6 Asymptotic compatibility

Local and Nonlocal Energies

Define for $u \in L^2(\Omega; \mathbb{R}^n)$:

$$\widetilde{E_{\delta}}(u) := \iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x, y) k_{\delta}(x - y) \frac{|Du(x, y)|^{2}}{|x - y|^{2}} dx dy - \int_{\Omega} \overline{g_{\delta}}(x) \cdot u(x) dx;$$

$$\widetilde{E_{0}}(u) := C(n) \int_{\Omega} \mathfrak{a}(x) (2 \|\operatorname{Sym}(\nabla u(x))\|_{F}^{2} + \operatorname{div}(u(x))^{2}) dx - \int_{\Omega} \overline{g}(x) \cdot u(x) dx,$$

where $C(n) := \frac{1}{(n+2)(n+4)}$, and $\|\cdot\|_F$ is the Fröbenius norm. Take to be $+\infty$ when not well-defined

Minimization of Local Functional

Theorem

Suppose $\{(\overline{u_{\delta}}, \overline{g_{\delta}})\}_{\delta>0}$ denotes the sequence of minimizers for the non-local optimal control problem. If $\overline{u_{\delta}} \to \overline{u}$ strongly in $L^2(\Omega; \mathbb{R}^n)$ and $\overline{g_{\delta}} \to \overline{g}$ weakly in $L^2(\Omega; \mathbb{R}^n)$, then $(\overline{u}, \overline{g})$ is the minimizer to the local optimal control problem.

Notice $\{\overline{u}_{\delta}\}_{\delta>0}$ have bounded semi-norm so compactness gives \overline{u} Notice $\{\overline{g}_{\delta}\}_{\delta>0}$ are bounded in $L^2(\Omega; \mathbb{R}^n)$ so reflexivity gives \overline{g} Need minimizers to be preserved in limit!

Γ-Convergence

Definition

We say that the family $\widetilde{E_{\delta}} : L^2(\Omega; \mathbb{R}^n) \to \mathbb{R} \cup \{+\infty\}$ Γ -converges strongly in $L^2(\Omega; \mathbb{R}^n)$ to $\widetilde{E_0} : L^2(\Omega; \mathbb{R}^n) \to \mathbb{R} \cup \{+\infty\}$ (denoted $\widetilde{E_{\delta}} \xrightarrow{\Gamma} \widetilde{E_0}$) if: i) The liminf inequality: Assume $u_{\delta} \to u$ strongly in $L^2(\Omega; \mathbb{R}^n)$. Then

$$\widetilde{E_0}(u) \leq \operatorname{liminf}_{\delta \to 0^+} \widetilde{E_\delta}(u_\delta)$$

ii) **Recovery sequence property:** For each $u \in L^2(\Omega; \mathbb{R}^n)$, there exists a sequence $\{u_{\delta}\}_{\delta>0}$ where $u_{\delta} \to u$ strongly in $L^2(\Omega; \mathbb{R}^n)$ and

 $\operatorname{limsup}_{\delta\to 0^+}\widetilde{E_{\delta}}(u_{\delta})\leq \widetilde{E_0}(u)$

Highlights: Recovery Sequence Proof

Use Taylor on $E_{\delta}(u)$ and symmetry of \mathfrak{A} , focus on controlling

$$C\int_{\Omega_{\delta}}\int_{\Omega_{\delta}}\mathfrak{a}(y)k_{\delta}(x-y)|x-y|dxdy;$$

$$\int_{\Omega_{\delta}} \int_{\Omega_{\delta}} \mathfrak{a}(y) k_{\delta}(x-y) \left\langle \mathsf{Sym}(\nabla u(x)) \frac{x-y}{|x-y|}, \frac{x-y}{|x-y|} \right\rangle^{2} dx dy$$

For first integral: decays to 0 due to support of k_{δ} and boundedness of Ω Handle second integral with Fubini, change of variables **Recovery sequence is** $u_{\delta} := u!$

Needed Compactness Result

Proposition (Mengesha-Du 2014)

Suppose $\{u_{\delta}\}_{\delta>0} \subset L^2(\Omega; \mathbb{R}^n)$ is a bounded family of vector fields such that

$$\sup_{\delta>0}\int_{\Omega_{\delta}}\int_{\Omega_{\delta}}k_{\delta}(x-y)\frac{|Du_{\delta}(x,y)|^{2}}{|x-y|^{2}}dxdy < \infty,$$

where $k_{\delta}(r)r^{-2}$ is nonincreasing; then the family has compact closure in $L^{2}(\Omega; \mathbb{R}^{n})$, and any limit point u belongs to $H^{1}(\Omega_{\delta}; \mathbb{R}^{n})$

In fact, we can show $u \in H_0^1(\Omega; \mathbb{R}^n)$!

Highlights: Lim-inf Inequality Proof

Goal:

$$\widetilde{E_0}(u) \leq \operatorname{liminf}_{\delta \to 0^+} \widetilde{E_\delta}(u_\delta)$$

- Assume without loss of generality $\liminf_{\delta \to 0^+} \widetilde{E_{\delta}}(u_{\delta}) < \infty$
- Use compactness, conclude limit point u ∈ H¹₀(Ω; ℝⁿ)
- Prove liminf inequality for the following forms of α: indicator functions; simple functions; non-negative L[∞](Ω) functions

Preservation of Minimizers

Lemma

If $\{v_{\delta}\}_{\delta>0}$ is a sequence of minimizers for $\{\widetilde{E_{\delta}}\}_{\delta>0}$ over $L^{2}(\Omega; \mathbb{R}^{n})$, v is a limit point of this sequence, and $\widetilde{E_{\delta}} \xrightarrow{\Gamma} \widetilde{E_{0}}$, then v is a minimizer of $\widetilde{E_{0}}$ on $L^{2}(\Omega; \mathbb{R}^{n})$. Finally,

$$\lim_{\delta \to 0^+} \widetilde{E_{\delta}}(v_{\delta}) = \widetilde{E_0}(v)$$

Tying Together Optimal Control

Since $(0, \overline{g_{\delta}}) \in \mathcal{A}^{\delta}$ for each $\delta > 0$, we have $\widetilde{E_{\delta}}(\overline{u}_{\delta}) \leq 0$; rearrange and use nonlocal Poincaré to get

$$[\overline{u}_{\delta}]_{X(\Omega_{\delta};\mathbb{R}^{n})} \leq C \|\overline{g}_{\delta}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \leq M$$

Finally, for any $(v,f)\in \mathcal{A}^{\mathsf{loc}}$,

$$I(\overline{u},\overline{g}) \leq \lim_{\delta \to 0^+} I(\overline{u}_{\delta},\overline{g}_{\delta}) \leq \lim_{\delta \to 0^+} I(f,v_{\delta}) \leq I(f,v),$$

where (v_{δ}, f) are solutions to the non-local state equation.

Outline

- Problem Formulation
- 2 Overview and Notation
- 3 Well-posedness
- 4) Convergence of state equation as $\delta
 ightarrow 0^+$
- Discretization
- O Asymptotic compatibility

Non-local discrete problem statement

Find $(\overline{u_{\delta,h}},\overline{g_{\delta,h}}) \in X_{\delta,h} \times Z_h$ such that

$$I(\overline{u_{\delta,h}},\overline{g_{\delta,h}}) = \min_{u_{\delta,h}\in X_{\delta,h}, g_{\delta,h}\in Z_h} I(u_{\delta,h}, g_{\delta,h}),$$

over pairs $(u_{\delta,h},g_{\delta,h})\in X_{\delta,h} imes Z_h$ that satisfy

$$B_{\delta}(u_{\delta,h},v_{\delta,h}) = \langle g_{\delta,h},v_{\delta,h} \rangle, \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

Recap:

$$I(u_{\delta,h},g_{\delta,h}) := \int_{\Omega} F(x,u_{\delta,h}(x)) dx + \frac{\lambda}{2} \|g_{\delta,h}\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2}$$

Henceforth assume $\Gamma\equiv 1$

Find $(\overline{u_h}, \overline{g_h}) \in X_h \times Z_h$ such that

$$I(\overline{u_h},\overline{g_h}) = \min_{u_h\in X_h, g_h\in Z_h} I(u_h,g_h),$$

over pairs $(u_h, g_h) \in X_h \times Z_h$ that satisfy

$$B_0(u_h, v_h) = \langle g_h, v_h \rangle, \quad \forall v_h \in Z_h.$$

Notation

- Mesh family: $\{\mathscr{T}_h\}_{h>0}$ (discretizing Ω_{δ}) shape-regular and quasi-uniform
- Piecewise polynomials of degree *m* (with respect to our mesh):

$$\mathcal{P}_m(T;\mathbb{R}^n) := \left\{ \sum_{\alpha \in \mathbb{N}_0^n : \sum_{i=1}^n \alpha_i \leq m} v_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n} \middle| v_\alpha \in \mathbb{R}^n, \ (x_i)_{i=1}^n \in T \right\}$$

- Discretized state space: $X_{\delta,h} := X_h := \{w_h \in C^0(\overline{\Omega_\delta}; \mathbb{R}^n) \mid w_h|_T \in \mathcal{P}_1(T; \mathbb{R}^n) \ \forall T \in \mathscr{T}_h, w_h = 0 \text{ on } \Omega_\delta \setminus \Omega \}$
- Discretized control space: $Z_h := \{z_h | T \in \mathcal{P}_0(T; \mathbb{R}^n) \ \forall T \in \mathscr{T}_h\}$
- $\Pi_0: Z_{ad} \rightarrow Z_h$ is piecewise constant projection by averages on each triangle

Nonlocal discrete control space: $(X_{\delta,h}, \|\cdot\|_X)$ Local discrete control space $(X_h, \|\cdot\|_{H^1})$

 $\begin{array}{ll} \mathcal{A}_{h}^{\delta} &:= \{(w_{\delta,h}, f_{\delta,h}) \in X_{\delta,h} \times Z_{h}, \\ & w_{\delta,h} \text{ solves system with right-hand side } f_{\delta,h} \text{ for any } v_{\delta,h} \in X_{\delta,h} \} \end{array}$

 $\mathcal{A}_h^{\mathsf{loc}} := \{(w_h, f_h) \in X_h \times Z_h, \}$

 w_h solves local system with right-hand side f_h for any $v_h \in X_h$

Optimality Conditions Preliminaries

Reduced cost functional:

$$j(g_{\delta}) := \int_{\Omega} F(x, S_{\delta}g_{\delta}(x)) dx + \frac{\lambda}{2} \|g_{\delta}\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2}$$

Assume now that

$$F(x,v):=\frac{1}{2}|v|^2$$

First-order necessary condition:

$$\langle j'(\overline{g_{\delta}}), \gamma_z - \overline{g_{\delta}}
angle \ \ge \ 0 \quad orall \gamma_z \in Z_{\mathsf{ad}}$$

Non-local continuous optimality conditions (including adjoint)

$$\begin{array}{lll} \langle \overline{p_{\delta}} + \lambda \overline{g_{\delta}}, \gamma_z - \overline{g_{\delta}} \rangle & \geq & 0, \quad \forall \gamma_z \in Z_{\mathsf{ad}} \\ \overline{p_{\delta}} & = & S_{\delta}^* F_u(\cdot, \overline{u_{\delta}}) & = & S_{\delta} F_u(\cdot, \overline{u_{\delta}}) \\ \overline{u_{\delta}} & = & S_{\delta} \overline{g_{\delta}}. \end{array}$$

Projection formula:

$$\overline{g_{\delta}}(x) \;=\; \mathbb{P}_{Z_{\mathsf{ad}}}\left(-rac{1}{\lambda}\overline{p_{\delta}}(x)
ight).$$

NOTE: No second-order optimality conditions needed (strict convexity!)

Non-local discrete optimality conditions (including adjoint)

$$\begin{array}{lll} \langle \overline{p_{\delta,h}} + \lambda \overline{g_{\delta,h}}, \gamma_h - \overline{g_{\delta,h}} \rangle & \geq & 0, \quad \forall \gamma_h \in Z_{\mathsf{ad}} \cap Z_h \\ \overline{p_{\delta,h}} & = & S^*_{\delta,h} F_u(\cdot, \overline{u_{\delta,h}}) & = & S_{\delta,h} F_u(\cdot, \overline{u_{\delta,h}}) \\ & \overline{u_{\delta,h}} & = & S_{\delta,h} \overline{g_{\delta,h}}. \end{array}$$

Projection formula:

$$\overline{g_{\delta,h}}(x) = \mathbb{P}_{Z_{ad}}\left(-\frac{1}{\lambda}\Pi_0\overline{p_{\delta,h}}(x)\right)$$

Discretization

Intermediary Functions

By Lax-Milgram, we may define $\widehat{u_{\delta}}, \widehat{p_{\delta}} \in X_0(\Omega_{\delta}; \mathbb{R}^n)$ such that

$$B_{\delta}(\widehat{u_{\delta}}, v_{\delta}) = \langle \overline{g_{\delta,h}}, v_{\delta} \rangle \quad \forall v_{\delta} \in X_{0}(\Omega_{\delta}; \mathbb{R}^{n});$$

$$B_{\delta}(v_{\delta},\widehat{p_{\delta}}) = \langle v_{\delta},\overline{u_{\delta,h}}
angle \quad \forall v_{\delta} \in X_0(\Omega_{\delta};\mathbb{R}^n);$$

also define $\widehat{u_h}, \widehat{p_h} \in H^1_0(\Omega; \mathbb{R}^n)$ such that

$$\begin{split} B_0(\widehat{u_h}, v) &= \langle \overline{g_h}, v \rangle \quad \forall v \in H_0^1(\Omega; \mathbb{R}^n); \\ B_0(v, \widehat{p_h}) &= \langle v, \widehat{u_h} \rangle \quad \forall v \in H_0^1(\Omega; \mathbb{R}^n). \end{split}$$

Theorem (State and Adjoint Error Estimates)

Suppose that $(\overline{u_{\delta,h}}, \overline{g_{\delta,h}})$ is the solution to the non-local discrete problem, $\overline{p_{\delta,h}}$ solves the discrete adjoint equation given $\overline{u_{\delta,h}}$; $(\overline{u_{\delta}}, \overline{g_{\delta}})$ is the solution to the nonlocal continuous problem; and $\overline{p_{\delta}}$ solves the continuous adjoint equation given $\overline{u_{\delta}}$. Then

$$\|\overline{u_{\delta}} - \overline{u_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \lesssim \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{u_{\delta}} - v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \|\overline{g_{\delta}} - \overline{g_{\delta,h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})}$$

$$\begin{split} \|\overline{p_{\delta}} - \overline{p_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \lesssim \inf_{\substack{\mathsf{v}_{\delta,h} \in X_{\delta,h}}} \|\widehat{p_{\delta}} - \mathsf{v}_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \\ \inf_{\substack{\mathsf{v}_{\delta,h} \in X_{\delta,h}}} \|\widehat{u_{\delta}} - \mathsf{v}_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \|\overline{g_{\delta}} - \overline{g_{\delta,h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \end{split}$$

State and Adjoint Error Estimates (continued)

Proof strategy for state error:

- Test with $v_{\delta} := \overline{u_{\delta}} \widehat{u_{\delta}}$ in state system and intermediary equation, subtract
- Use Hölder Inequality to get $\|\overline{u_{\delta}} \widehat{u_{\delta}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \lesssim \|\overline{g_{\delta}} \overline{g_{\delta,h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})}$
- Use Ceá's Lemma on space $X_{\delta,h}$

Note: Adjoint error estimate proven by same strategy

State and Adjoint Error Estimates (local)

Theorem

Let $(\overline{u}, \overline{g})$ denote the solution to the local continuous problem, while $(\overline{u_h}, \overline{g_h})$ is the solution to the local discrete problem. Assume also that \overline{p} denotes the solution to the continuous adjoint problem, while $\overline{p_h}$ solves the discrete adjoint problem. Then,

$$\|\overline{u}-\overline{u_h}\|_{H^1(\Omega;\mathbb{R}^n)} \lesssim \inf_{v_h \in X_h} [\widehat{u}_h - v_h]_{H^1(\Omega;\mathbb{R}^n)} + \|\overline{g}-\overline{g_h}\|_{L^2(\Omega;\mathbb{R}^n)};$$

 $\|\overline{\rho}-\overline{\rho_h}\|_{H^1(\Omega;\mathbb{R}^n)} \lesssim \inf_{\nu_{\delta,h}\in X_h} [\widehat{\rho_h}-\nu_h]_{H^1(\Omega;\mathbb{R}^n)} + \inf_{\nu_h\in X_h} [\widehat{u_h}-\nu_h]_{H^1(\Omega;\mathbb{R}^n)} + \|\overline{g}-\overline{g_h}\|_{L^2(\Omega;\mathbb{R}^n)}.$

Theorem (Convergence of Controls)

Assume that $\overline{g_{\delta}}$ is the optimal control associated with the nonlocal continuous problem, and $\overline{g_{\delta,h}}$ be the discrete optimal control. Then we have the convergence

$$egin{aligned} \|\overline{g_{\delta}}-\overline{g_{\delta,h}}\|^2_{L^2(\Omega;\mathbb{R}^n)} \lesssim & \omega(h) + \left(\inf_{v_{\delta,h}\in X_{\delta,h}}[\overline{u_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^n)}
ight)^2 \ & + \left(\inf_{v_{\delta,h}\in X_{\delta,h}}[\overline{p_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^n)}
ight)^2. \end{aligned}$$

Non-local Problem Convergence: Summary

Corollary (Full Norm Solution Convergence)

In the setting of our problem formulation,

$$\begin{split} \|\overline{u_{\delta}} - \overline{u_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \lesssim & \omega(h) + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{u_{\delta}} - v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \\ & \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}; \end{split}$$

$$\begin{split} \|\overline{p_{\delta}}-\overline{p_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} &\lesssim \ \omega(h) + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{p_{h}}-v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{u_{\delta}}-v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \\ &+ \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}. \end{split}$$

Theorem

Suppose $(\overline{u}, \overline{g})$ denotes the solution to the local continuous problem, while $(\overline{u_h}, \overline{g_h})$ is the solution to the local discrete problem, and \overline{p} and $\overline{p_h}$ solve the respective adjoint problems. We have the estimates

$$\begin{split} \|\overline{u}-\overline{u_{h}}\|_{H^{1}(\Omega;\mathbb{R}^{n})} &\lesssim \inf_{v_{h}\in X_{h}} [\widehat{u}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})} + \|\overline{g}-\overline{g_{h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})};\\ \|\overline{p}-\overline{p}\|_{H^{1}(\Omega;\mathbb{R}^{n})} &\lesssim \inf_{v_{h}\in X_{h}} [\widehat{p}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})} + \inf_{v_{h}\in X_{h}} [\widehat{u}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})} + \|\overline{g}-\overline{g_{h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})}.\\ \|\overline{g}-\overline{g_{h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})} &\lesssim h + \inf_{v_{h}\in X_{h}} [\overline{p}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})} + \inf_{v_{h}\in X_{h}} [\overline{u}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})}. \end{split}$$

Discrete Analogues of Convergence

Proposition (**F**-convergence of discrete problems)

We have that $\widetilde{E_{\delta}} \xrightarrow{\Gamma} \widetilde{E_0}$ in the family of spaces $\{X_{\delta,h}\}_{\delta>0}$ in the strong $L^2(\Omega; \mathbb{R}^n)$ topology.

Theorem (Discrete Convergence)

Suppose $\{(\overline{u_{\delta,h}},\overline{g_{\delta,h}})\}_{\delta>0} \in \mathcal{A}_h^{\delta}$ is the family of solutions to the non-local discrete problem. Then, there is $(\overline{u_h},\overline{g_h}) \in \mathcal{A}_h^{loc}$ such that $\overline{u_{\delta,h}} \to \overline{u_h}$ in $L^2(\Omega; \mathbb{R}^n)$ and $\overline{g_{\delta,h}} \rightharpoonup \overline{g_{\delta}}$ in $L^2(\Omega; \mathbb{R}^n)$. Moreover, $(\overline{u_h},\overline{g_h})$ solves the local discrete optimal control problem.

Outline

- **D** Problem Formulation
- **2** Overview and Notation
- 3 Well-posedness
- 4 Convergence of state equation as $\delta
 ightarrow 0^+$
- **Discretization**

Asymptotic compatibility

What is asymptotic compatibility?

- Introduced by X. Tian and Q. Du (2014)
- Originally developed for linear, non-local state equations
- Unconditional convergence of approximations in both discretization and horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions $\{u_{\delta,h}\}_{\delta,h>0}$ is **asymptotically compatible** in $\delta, h > 0$ if for any sequences $\{\delta_k\}_{k=1}^{\infty}, \{h_k\}_{k=1}^{\infty}$ with $\delta_k, h_k \to 0$, we have that $u_{\delta_k,h_k} \to u_0$ strongly in some Hilbert space norm, where u_0 is the solution to a local, continuous problem.

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions $\{(\overline{u_{\delta,h}}, \overline{g_{\delta,h}})\}_{h>0,\delta>0}$ to the nonlocal discrete optimal control problem is **asymptotically compatible** in $\delta, h > 0$ if for any sequences $\{\delta_k\}_{k=1}^{\infty}, \{h_k\}_{k=1}^{\infty}$ with $\delta_k, h_k \to 0$, we have that $\overline{g_{\delta_k,h_k}} \to \overline{g}$ weakly in $L^2(\Omega; \mathbb{R}^n)$, and $\overline{u_{\delta_k,h_k}} \to \overline{u}$ strongly in $L^2(\Omega; \mathbb{R}^n)$. Here $(\overline{u}, \overline{g}) \in H_0^1(\Omega; \mathbb{R}^n) \times Z_{ad}$ denotes the optimal solution for the local continuous problem.

NOTE: In particular, $H_0^1(\Omega; \mathbb{R}^n)$ is the limiting space of $X_0(\Omega_{\delta}; \mathbb{R}^n)$ as $\delta \to 0^+$

Asymptotic compatibility: result and notation

Theorem

Assume \mathfrak{A} is Lipschitz. Then, our family of optimal control problems is asymptotically compatible as $\delta, h \to 0^+$.

Define $A_{\delta}: X_0(\Omega_{\delta}; \mathbb{R}^n) \to (X_0(\Omega_{\delta}; \mathbb{R}^n))^*$ as the invertible operator such that

$$\langle A_{\delta}u,v\rangle_{X_0^*,X_0} = B_{\delta}(u,v) \quad \forall u,v \in X_0(\Omega_{\delta};\mathbb{R}^n);$$

define $A_0: H^1_0(\Omega; \mathbb{R}^n) \to H^{-1}(\Omega; \mathbb{R}^n)$ as the invertible operator such that

$$\langle A_0 u, v \rangle_{H^{-1}, H^1_0} = B_0(u, v) \quad \forall u, v \in H^1_0(\Omega; \mathbb{R}^n).$$

Proof of asymptotic compatibility

Needed preliminaries:

- Given a $v \in H^1_0(\Omega; \mathbb{R}^n)$, and $h_k, \delta_k \to 0$, we can find a sequence $v_k \in X_{\delta_k, h_k}$ such that $v_k \to v$ strongly in $H^1(\Omega; \mathbb{R}^n)$ as $k \to \infty$.
- Our For any sequences {δ_k}[∞]_{k=1}, {h_k}[∞]_{k=1} with δ_k, h_k → 0, there exists a C > 0 so that ||uδ_k,h_k||_{X(Ωδ_k;ℝⁿ)} ≤ C uniformly in k ∈ N⁺.
- We have that A_δu ∈ L²(Ω; ℝⁿ) and lim_{δ→0⁺} ||A_δu − A₀u||_{L²(Ω;ℝⁿ)} = 0 for each u ∈ C₀[∞](Ω; ℝⁿ).

Pick sub-sequence of $\{(\overline{u_k}, \overline{g_k}, \overline{p_k})\}_{k=1}^{\infty}$ so there is a limit point $(u_*, g_*, p_*) \in H_0^1(\Omega; \mathbb{R}^n) \times Z_{ad} \times H_0^1(\Omega; \mathbb{R}^n)$ with convergence in appropriate topology

Proof of asymptotic compatibility (continued)

Step 1: Show that $B_0(u_*, \varphi) = \langle g_*, \varphi \rangle$ for all $\varphi \in H_0^1(\Omega; \mathbb{R}^n)$ Pick $\varphi \in C_0^{\infty}(\Omega; \mathbb{R}^n)$, let $w_k := I_k \varphi$ (nodal interpolation), $w_k \to \varphi$ in $W^{1,\infty}(\Omega; \mathbb{R}^n)$, then compute limit as $k \to \infty$ of

$$B_{\delta_k}(\overline{u_k}, w_k) = \langle A_{\delta_k} \varphi, \overline{u_k} \rangle_{X_0^*, X_0} + \langle A_{\delta_k}(w_k - \varphi), \overline{u_k} \rangle_{X_0^*, X_0} =: I_k + II_k.$$

Step 2: Show that $B_0(\varphi, p_*) = \langle u_*, \varphi \rangle$ for all $\varphi \in H_0^1(\Omega; \mathbb{R}^n)$ Strategy is identical to Step 1!

Step 3: Show that $g_*(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(p_*(x))$ Recall that $\overline{g_k}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\Pi_0 \overline{p_k}(x))$, show $\Pi_0 \overline{p_k} \to p_*$ strongly in $L^2(\Omega; \mathbb{R}^n)$

Proof of asymptotic compatibility (continued)

Step 4: Unraveling

- Steps 1-3 and uniqueness of solutions to optimality system give $\overline{u} = u_*$, $\overline{g} = g_*$, and $\overline{p} = p_*$
- This is the limit point reached for any sub-sequence of original sequence
- Entire sequence of triples $\{(\overline{u_k}, \overline{g_k}, \overline{p_k})\}_{k=1}^{\infty}$ converges to $(\overline{u}, \overline{g}, \overline{p})$

- Showed existence and uniqueness of minimizers
- Considered behavior as $\delta \to 0^+$
- Discretized via FEAs
- Studied simultaneous limit as $\delta, h \rightarrow 0^+$ (asymptotic compatibility)

Thank you! Questions?

ArXiV preprint: https://arxiv.org/pdf/2304.09328.pdf

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that

$$rac{c}{\xi|^{n+2s}} \ \le \ rac{k_{\delta}(\xi)}{|\xi|^2} \ \le \ rac{C}{|\xi|^{n+2s}}$$

holds for all $\xi \in B(0, \delta)$, for some $s \neq \frac{1}{2}$. Then necessarily $\overline{g_{\delta}} \in X(\Omega_{\delta}; \mathbb{R}^{n})$.

Proof strategy:

- Mengesha-Du 2016 says that $H^{s}(\Omega_{\delta}; \mathbb{R}^{n}) = X(\Omega_{\delta}; \mathbb{R}^{n})$ here
- Use projection formula $\overline{g_{\delta}}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\overline{p_{\delta}}(x))$
- This pointwise projection is continuous in *H^s* semi-norm but not *X* semi-norm!

Auxiliary Lemmas (continued)

Lemma (Approximation)

If $w \in L^2(\Omega_{\delta}; \mathbb{R}^n)$, then

$$\|\Pi_0 w - w\|_{L^2(\Omega;\mathbb{R}^n)} \leq \omega(h),$$

where $\Pi_0 : L^2(\Omega_{\delta}; \mathbb{R}^n) \to Z_h$ denotes the projection of a function onto the piecewise constants with respect to the given mesh. If in fact $w \in X(\Omega_{\delta}; \mathbb{R}^n)$ and k_{δ} satisfies the fractional inequality on $B(0, \delta)$ for some $s \neq \frac{1}{2}$, then

$$\|\Pi_0 w - w\|_{L^2(\Omega;\mathbb{R}^n)} \lesssim h^s \|w\|_{X(\Omega_\delta;\mathbb{R}^n)}.$$

Galerkin Approximations:

 $q_{\delta,h} \in X_{\delta,h}$ be the Galerkin approximation to $\overline{p_{\delta}}$, i.e., the solution of

$$B_{\delta}(v_{\delta,h},q_{\delta,h}) \;=\; \langle \overline{u_{\delta}},v_{\delta,h}
angle \qquad orall v_{\delta,h} \in X_{\delta,h}.$$

 $U_{\delta,h} \in X_{\delta,h}$ for $\overline{u_{\delta}}$:

$$B_{\delta}(U_{\delta,h},v_{\delta,h}) = \langle \overline{g_{\delta}},v_{\delta,h} \rangle \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

 $r_{\delta,h} \in X_{\delta,h}$ solves

$$B_{\delta}(v_{\delta,h},r_{\delta,h}) = \langle U_{\delta,h},v_{\delta,h} \rangle \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

Back

Let $I_1 := \langle \overline{p_{\delta}} - \overline{p_{\delta,h}}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle$ and $I_2 := \langle \overline{p_{\delta,h}} + \lambda \overline{g_{\delta,h}}, \Pi_0 \overline{g_{\delta}} - \overline{g_{\delta}} \rangle$. Using optimality conditions gives

$$\lambda \|\overline{g_{\delta}} - \overline{g_{\delta,h}}\|_{L^2(\Omega;\mathbb{R}^n)}^2 \leq I_1 + I_2.$$

$$I_{1} = \langle \overline{p_{\delta}} - q_{\delta,h}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle + \langle q_{\delta,h} - r_{\delta,h}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle + \langle r_{\delta,h} - \overline{p_{\delta,h}}, \overline{g_{\delta,h}} - \overline{g_{\delta}} \rangle =: I_{1,1} + I_{1,2} + I_{1,3}.$$

By use of Galerkin approximations, find that $\mathit{I}_{1,3} \leq 0$ and

$$I_{1,1} \lesssim \|\overline{g_{\delta,h}} - \overline{g_{\delta}}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})};$$

$$I_{1,2} \lesssim \|\overline{g_{\delta,h}} - \overline{g_{\delta}}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}.$$

By Young's Inequality,

$$egin{aligned} &\mathcal{I}_1 &\leq rac{\lambda}{3} \|\overline{g_{\delta,h}} - \overline{g_\delta}\|_{L^2(\Omega;\mathbb{R}^n)}^2 + C \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2 + \ &C \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2. \end{aligned}$$

Now we write I_2 as

$$\begin{split} \langle \overline{p_{\delta,h}} + \lambda \overline{g_{\delta,h}}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle &= \langle \overline{p_\delta} + \lambda \overline{g_\delta}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle + \lambda \langle \overline{g_{\delta,h}} - \overline{g_\delta}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle + \\ \langle \overline{p_{\delta,h}} - r_{\delta,h}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle + \langle r_{\delta,h} - q_{\delta,h}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle + \langle q_{\delta,h} - \overline{p_\delta}, \Pi_0 \overline{g_\delta} - \overline{g_\delta} \rangle + \\ l_{2,1} + l_{2,2} + l_{2,3} + l_{2,4} + l_{2,5}. \end{split}$$

Use that
$$\Pi_0(\overline{p_{\delta}} + \lambda \overline{g_{\delta}}) = 0$$
 to estimate $I_{2,1}$ as

 $I_{2,1} \leq \omega(h).$

For $I_{2,2}$, use Cauchy and stability:

$$I_{2,2} ~\leq~ rac{\lambda}{3} \| \overline{g_{\delta,h}} - \overline{g_\delta} \|_{L^2(\Omega;\mathbb{R}^n)}^2 + \omega(h),$$

For $I_{2,3}$, use Galerkin approximations and the stabilty:

$$I_{2,3} \leq \omega(h)^2 + \left(\inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2$$

For $I_{2,4}$ and $I_{2,5}$, use Ceá's lemma and Cauchy:

Use Young's Inequality and combine all the estimates to get

$$rac{\lambda}{3} \|\overline{g_\delta} - \overline{g_{\delta,h}}\|_{L^2(\Omega;\mathbb{R}^n)}^2 \lesssim \omega(h)^2 + \left(\inf_{egin{smallmatrix} v_{\delta,h} \in X_{\delta,h}} [\overline{u_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2 + \ \left(\inf_{egin{smallmatrix} v_{\delta,h} \in X_{\delta,h}} [\overline{p_\delta} - v_{\delta,h}]_{X(\Omega_\delta;\mathbb{R}^n)}
ight)^2.$$

