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Problem Formulation

Problem Statement

Find (uδ, gδ) ∈ X0 × Zad such that

I(uδ, gδ) = min
gδ∈L2,uδ∈X0

{ˆ
Ω
F (x , uδ(x))dx + λ

2

ˆ
Ω

Γ(x)|g(x)|2dx
}
,

over pairs (uδ, gδ) ∈ X0 × Zad that satisfy some state equation (exact form TBD)

Bδ(uδ,wδ) =
ˆ

Ω
gδ(x) · wδ(x), ∀wδ ∈ X0.

where δ ≥ 0 is the degree of non-locality. Here gδ is an external force and uδ
represents the displacement



Problem Formulation

Sample Candidate integrand



Problem Formulation

Goals

Show existence and uniqueness of minimizers
Consider behavior as δ → 0+

Discretize via FEA
Study simultaneous limit as δ, h→ 0+ (asymptotic compatibility)



Overview and Notation

Outline

1 Problem Formulation

2 Overview and Notation

3 Well-posedness

4 Convergence of state equation as δ → 0+

5 Discretization

6 Asymptotic compatibility



Overview and Notation

Motivation and Origins

For our problem the nonlocal operator is

Lδu(x) = 1
2

ˆ
Ωδ

A(x , y)kδ(|x − y |)Du(x , y)
|x − y |

y − x
|x − y |dy

Nonlocal equations [or systems] take the form{
Lδu = g , x ∈ Ω
u = 0, x ∈ Ωδ \ Ω

Common in solid state mechanics, including peridynamics



Overview and Notation

Motivation and Origins (continued)

Definition (PD)
Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals
over derivatives, attributed to Stewart A. Silling

Features:
Exchanges derivatives in continuum models for integrals (helps address crack
formation)
Treats particles as having a bond between them (bond-based model)
Range of interaction parameterized by δ, called horizon
Material parameters represented by a(x) (e.g., density)
Operator is elliptic (not parabolic or hyperbolic)



Overview and Notation

Notation

Let Ω ⊂ Rn be a bounded domain, Ωδ := Ω ∪ {x , dist(x , ∂Ω) < δ}
Ωδ \ Ω is non-local boundary
Dδ := (Ω× Ωδ) ∪ (Ωδ × Ω)
Projected difference: Du(x , y) := (u(x)−u(y))·(x−y)

|x−y | , nonlocal linearized strain
(for vector-valued functions)
Our material coefficient function is

A(x , y) := a(x) + a(y)
2 ,

where there exist amin, amax > 0 so amin ≤ a ≤ amax on Ωδ.



Overview and Notation

Properties of Kernels

Kernel sequence {kδ}δ>0 radial, integrable, non-negative, supported in B(0, δ),
kδ(r)r−2 is nonincreasing, and

lim
δ→0+

ˆ
Rn

kδ(ξ)dξ = δ0

Also, for all δ > 0: ˆ
Rn

kδ(ξ)dξ = 1

lim
t→∞

ˆ
Rn\B(0,t)

kδ(ξ)dξ = 0



Overview and Notation

Bi-linear forms

Nonlocal bi-linear form:

Bδ(u, v) := 1
2

¨
Dδ

A(x , y)kδ(x − y)Du(x , y)
|x − y |

Dv(x , y)
|x − y | dxdy

Local bi-linear form:

B0(u, v) := C(n)
ˆ

Ω
a(x)(2〈Sym(5u),Sym(5v)〉F + div(u)div(v))dx ,

with C(n) = 1
(n+2)(n+4)

Inner products denoted 〈·, ·〉Y ; L2-inner product denoted 〈·, ·〉



Overview and Notation

Function Spaces

Our function space is based on Bδ :

X (Ωδ;Rn) := {u|Ω∈ L2(Ω;Rn),Bδ(u, u) <∞}

Version with zero non-local boundary data:

X0(Ωδ;Rn) := {u ∈ X (Ωδ;Rn), u = 0 in Ωδ \ Ω}



Overview and Notation

Cost Functional Assumptions

I(u, g) :=
ˆ

Ω
F (x , u(x))dx + λ

2

ˆ
Ω

Γ(x)|g(x)|2dx .

Here Zad is a nonempty, closed, convex, and bounded subset of L2(Ω;Rn), taking
the form

Zad = {z ∈ L2(Ω;Rn), a � z � b}

Here [a]i ≤ [b]i for all i ∈ {1, 2, . . . , n} with a = ([a]1, . . . , [a]n) and
b = ([b]1, . . . , [b]n) being vector fields in L2(Ω;Rn), λ ≥ 0, and Γ ∈ L∞(Ω) is
positive.



Overview and Notation

Cost Functional Assumptions (continued)

The integrand F : Ω× Rn → R possesses the following properties:
1 For all v ∈ Rn the mapping x 7→ F (x , v) is measurable;
2 For all x ∈ Ω the mapping v 7→ F (x , v) is continuous and convex;
3 There exist c1 > 0 and ` ∈ L1(Ω)

|F (x , v)| ≤ c1|v |2+`(x)

for all x ∈ Ω, v ∈ Rn.



Overview and Notation

Admissible Classes

Aδ := {(v , f ) ∈ X0(Ωδ;Rn)× Zad,

v solves state system with right hand side f for any w ∈ X0(Ωδ;Rn)}

Aloc := {(v , f ) ∈ H1
0 (Ω;Rn)× Zad,

v solves local BVP for any w ∈ H1
0 (Ω;Rn)}
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Well-posedness

Structural Properties

(X (Ωδ;Rn), ‖·‖X ) and (X0(Ωδ;Rn), ‖·‖X ) are Hilbert
Can extend u ∈ X0(Ωδ;Rn) by zero to any open set B ⊃ Ωδ, including Rn.
H1(Ωδ;Rn) ↪→ X (Ωδ;Rn)
X (Ωδ;Rn) b L2(Ωδ;Rn)



Well-posedness

Nonlocal Poincaré Inequality

Proposition (Nonlocal Poincaré-Korn (Mengesha-Du 2014))
There exists a δ0 > 0 and a constant C(δ0) > 0 such that for all δ ∈ (0, δ0] and
u ∈ X0(Ωδ;Rn),

‖u‖2
L2(Ω;Rn) ≤ C(δ0)

ˆ
Ωδ

ˆ
Ωδ

kδ(x − y)|Du(x , y)|2
|x − y |2 dxdy .

Notes:
The assumption of kδ(r)r−2 being non-increasing is needed in the proof
The projected difference vanishes under infinitesimal rigid displacements



Well-posedness

State equation is well-posed!

Theorem (Existence and Uniqueness for State Equation)

For any gδ ∈ L2, there exists a unique u ∈ X0 such that the state system

Bδ(uδ,wδ) = 〈gδ,wδ〉

is satisfied for all wδ ∈ X0. Furthermore, we have the stability estimate

‖uδ‖X(Ωδ ;Rn) . ‖gδ‖X(Ωδ ;Rn)∗

for some constant independent of δ.



Well-posedness

Minimization Problem

Goal: find (uδ, gδ) ∈ X0 × L2 minimizing

I(uδ, gδ) =
ˆ

Ω
F (x , uδ(x))dx + λ

2

ˆ
Ω

Γ(x)|gδ(x)|2dx

subject to: λ ≥ 0, gδ ∈ Zad ⊂ L2 and (uδ, gδ) ∈ X0 × L2 solving

Bδ(uδ, vδ) =
ˆ

Ω
gδ(x) · vδ(x)dx ∀vδ ∈ X0



Well-posedness

Well-posedness of optimal control problem

Theorem (Well-posedness)
There exists (uδ, gδ) ∈ X0(Ωδ;Rn)× Zad minimizing

I(uδ, gδ) =
ˆ

Ω
F (x , uδ(x))dx + λ

2

ˆ
Ω

Γ(x)|gδ(x)|2dx ,

where uδ ∈ X0 solves

Bδ(uδ, vδ) =
ˆ

Ω
gδ(x) · vδ(x)dx ∀vδ ∈ X0

Furthermore, if F is strictly convex or λ > 0, then the minimizer is unique.

Use compactness to apply direct method
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Convergence of state equation as δ → 0+

Local and Nonlocal Energies

Define for u ∈ L2(Ω;Rn):

Ẽδ(u) :=
¨
Dδ

A(x , y)kδ(x − y) |Du(x , y)|2
|x − y |2 dxdy −

ˆ
Ω
gδ(x) · u(x)dx ;

Ẽ0(u) := C(n)
ˆ

Ω
a(x)(2‖Sym(5u(x))‖2

F +div(u(x))2)dx −
ˆ

Ω
g(x) · u(x)dx ,

where C(n) := 1
(n+2)(n+4) , and ‖·‖F is the Fröbenius norm. Take to be +∞ when

not well-defined



Convergence of state equation as δ → 0+

Minimization of Local Functional

Theorem

Suppose {(uδ, gδ)}δ>0 denotes the sequence of minimizers for the non-local
optimal control problem. If uδ → u strongly in L2(Ω;Rn) and gδ ⇀ g weakly in
L2(Ω;Rn), then (u, g) is the minimizer to the local optimal control problem.

Notice {uδ}δ>0 have bounded semi-norm so compactness gives u
Notice {gδ}δ>0 are bounded in L2(Ω;Rn) so reflexivity gives g
Need minimizers to be preserved in limit!



Convergence of state equation as δ → 0+

Γ-Convergence

Definition

We say that the family Ẽδ : L2(Ω;Rn)→ R ∪ {+∞} Γ-converges strongly in
L2(Ω;Rn) to Ẽ0 : L2(Ω;Rn)→ R ∪ {+∞} (denoted Ẽδ

Γ−→ Ẽ0) if:
i) The liminf inequality: Assume uδ → u strongly in L2(Ω;Rn). Then

Ẽ0(u) ≤ liminfδ→0+ Ẽδ(uδ)

ii) Recovery sequence property: For each u ∈ L2(Ω;Rn), there exists a
sequence {uδ}δ>0 where uδ → u strongly in L2(Ω;Rn) and

limsupδ→0+ Ẽδ(uδ) ≤ Ẽ0(u)



Convergence of state equation as δ → 0+

Highlights: Recovery Sequence Proof

Use Taylor on Ẽδ(u) and symmetry of A, focus on controlling

C
ˆ

Ωδ

ˆ
Ωδ

a(y)kδ(x − y)|x − y |dxdy ;

ˆ
Ωδ

ˆ
Ωδ

a(y)kδ(x − y)
〈
Sym(5u(x)) x − y

|x − y | ,
x − y
|x − y |

〉2

dxdy

For first integral: decays to 0 due to support of kδ and boundedness of Ω
Handle second integral with Fubini, change of variables
Recovery sequence is uδ := u!



Convergence of state equation as δ → 0+

Needed Compactness Result

Proposition (Mengesha-Du 2014)
Suppose {uδ}δ>0 ⊂ L2(Ω;Rn) is a bounded family of vector fields such that

sup
δ>0

ˆ
Ωδ

ˆ
Ωδ

kδ(x − y) |Duδ(x , y)|2
|x − y |2 dxdy < ∞,

where kδ(r)r−2 is nonincreasing; then the family has compact closure in
L2(Ω;Rn), and any limit point u belongs to H1(Ωδ;Rn)

In fact, we can show u ∈ H1
0 (Ω;Rn)!



Convergence of state equation as δ → 0+

Highlights: Lim-inf Inequality Proof

Goal:
Ẽ0(u) ≤ liminfδ→0+ Ẽδ(uδ)

Assume without loss of generality liminfδ→0+ Ẽδ(uδ) <∞
Use compactness, conclude limit point u ∈ H1

0 (Ω;Rn)
Prove liminf inequality for the following forms of a: indicator functions;
simple functions; non-negative L∞(Ω) functions



Convergence of state equation as δ → 0+

Preservation of Minimizers

Lemma

If {vδ}δ>0 is a sequence of minimizers for {Ẽδ}δ>0 over L2(Ω;Rn), v is a limit
point of this sequence, and Ẽδ

Γ−→ Ẽ0, then v is a minimizer of Ẽ0 on L2(Ω;Rn).
Finally,

lim
δ→0+

Ẽδ(vδ) = Ẽ0(v)



Convergence of state equation as δ → 0+

Tying Together Optimal Control

Since (0, gδ) ∈ Aδ for each δ > 0, we have Ẽδ(uδ) ≤ 0; rearrange and use
nonlocal Poincaré to get

[uδ]X(Ωδ ;Rn) ≤ C‖gδ‖L2(Ω;Rn) ≤ M

Finally, for any (v , f ) ∈ Aloc,

I(u, g) ≤ lim
δ→0+

I(uδ, gδ) ≤ lim
δ→0+

I(f , vδ) ≤ I(f , v),

where (vδ, f ) are solutions to the non-local state equation.
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Discretization

Non-local discrete problem statement

Find (uδ,h, gδ,h) ∈ Xδ,h × Zh such that

I(uδ,h, gδ,h) = min
uδ,h∈Xδ,h, gδ,h∈Zh

I(uδ,h, gδ,h),

over pairs (uδ,h, gδ,h) ∈ Xδ,h × Zh that satisfy

Bδ(uδ,h, vδ,h) = 〈gδ,h, vδ,h〉, ∀vδ,h ∈ Xδ,h.

Recap:
I(uδ,h, gδ,h) :=

ˆ
Ω
F (x , uδ,h(x))dx + λ

2 ‖gδ,h‖
2
L2(Ω;Rn)

Henceforth assume Γ ≡ 1



Discretization

Local discrete problem statement

Find (uh, gh) ∈ Xh × Zh such that

I(uh, gh) = min
uh∈Xh, gh∈Zh

I(uh, gh),

over pairs (uh, gh) ∈ Xh × Zh that satisfy

B0(uh, vh) = 〈gh, vh〉, ∀vh ∈ Zh.



Discretization

Notation

Mesh family: {Th}h>0 (discretizing Ωδ) shape-regular and quasi-uniform
Piecewise polynomials of degree m (with respect to our mesh):

Pm(T ;Rn) :=


∑

α∈Nn
0 :
∑n

i=1
αi≤m

vαxα1
1 · · · xαn

n

∣∣∣∣∣∣∣ vα ∈ Rn, (xi )n
i=1 ∈ T


Discretized state space: Xδ,h := Xh := {wh ∈ C0(Ωδ;Rn) | wh|T∈
P1(T ;Rn) ∀T ∈ Th,wh = 0 on Ωδ \ Ω}
Discretized control space: Zh := {zh|T∈ P0(T ;Rn) ∀T ∈ Th}
Π0 : Zad → Zh is piecewise constant projection by averages on each triangle



Discretization

Notation (continued)

Nonlocal discrete control space: (Xδ,h, ‖·‖X )
Local discrete control space (Xh, ‖·‖H1 )

Aδh := {(wδ,h, fδ,h) ∈ Xδ,h × Zh,

wδ,h solves system with right-hand side fδ,h for any vδ,h ∈ Xδ,h}

Aloc
h := {(wh, fh) ∈ Xh × Zh,

wh solves local system with right-hand side fh for any vh ∈ Xh}



Discretization

Optimality Conditions Preliminaries

Reduced cost functional:

j(gδ) :=
ˆ

Ω
F (x ,Sδgδ(x))dx + λ

2 ‖gδ‖
2
L2(Ω;Rn)

Assume now that
F (x , v) := 1

2 |v |
2.

First-order necessary condition:

〈j ′(gδ), γz − gδ〉 ≥ 0 ∀γz ∈ Zad



Discretization

Optimality Conditions

Non-local continuous optimality conditions (including adjoint)

〈pδ + λgδ, γz − gδ〉 ≥ 0, ∀γz ∈ Zad

pδ = S∗δ Fu(·, uδ) = SδFu(·, uδ)
uδ = Sδgδ.

Projection formula:

gδ(x) = PZad

(
− 1
λ
pδ(x)

)
.

NOTE: No second-order optimality conditions needed (strict convexity!)



Discretization

Optimality Conditions (discretized)

Non-local discrete optimality conditions (including adjoint)

〈pδ,h + λgδ,h, γh − gδ,h〉 ≥ 0, ∀γh ∈ Zad ∩ Zh

pδ,h = S∗δ,hFu(·, uδ,h) = Sδ,hFu(·, uδ,h)
uδ,h = Sδ,hgδ,h.

Projection formula:

gδ,h(x) = PZad

(
− 1
λ

Π0pδ,h(x)
)



Discretization

Intermediary Functions

By Lax-Milgram, we may define ûδ, p̂δ ∈ X0(Ωδ;Rn) such that

Bδ(ûδ, vδ) = 〈gδ,h, vδ〉 ∀vδ ∈ X0(Ωδ;Rn);

Bδ(vδ, p̂δ) = 〈vδ, uδ,h〉 ∀vδ ∈ X0(Ωδ;Rn);

also define ûh, p̂h ∈ H1
0 (Ω;Rn) such that

B0(ûh, v) = 〈gh, v〉 ∀v ∈ H1
0 (Ω;Rn);

B0(v , p̂h) = 〈v , ûh〉 ∀v ∈ H1
0 (Ω;Rn).



Discretization

Control and State Error Estimate

Theorem (State and Adjoint Error Estimates)

Suppose that (uδ,h, gδ,h) is the solution to the non-local discrete problem, pδ,h
solves the discrete adjoint equation given uδ,h; (uδ, gδ) is the solution to the
nonlocal continuous problem; and pδ solves the continuous adjoint equation given
uδ. Then

‖uδ − uδ,h‖X(Ωδ ;Rn) . inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(Ωδ ;Rn)+‖gδ − gδ,h‖L2(Ω;Rn);

‖pδ − pδ,h‖X(Ωδ ;Rn) . inf
vδ,h∈Xδ,h

‖p̂δ − vδ,h‖X(Ωδ ;Rn)+

inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(Ωδ ;Rn)+‖gδ − gδ,h‖L2(Ω;Rn)



Discretization

State and Adjoint Error Estimates (continued)

Proof strategy for state error:
Test with vδ := uδ − ûδ in state system and intermediary equation, subtract
Use Hölder Inequality to get ‖uδ − ûδ‖X(Ωδ ;Rn) . ‖gδ − gδ,h‖L2(Ω;Rn)

Use Ceá’s Lemma on space Xδ,h
Note: Adjoint error estimate proven by same strategy



Discretization

State and Adjoint Error Estimates (local)

Theorem
Let (u, g) denote the solution to the local continuous problem, while (uh, gh) is
the solution to the local discrete problem. Assume also that p denotes the
solution to the continuous adjoint problem, while ph solves the discrete adjoint
problem. Then,

‖u − uh‖H1(Ω;Rn) . inf
vh∈Xh

[ûh − vh]H1(Ω;Rn) + ‖g − gh‖L2(Ω;Rn);

‖p−ph‖H1(Ω;Rn) . inf
vδ,h∈Xh

[p̂h−vh]H1(Ω;Rn) + inf
vh∈Xh

[ûh−vh]H1(Ω;Rn) +‖g−gh‖L2(Ω;Rn).



Discretization

Control Convergence

Theorem (Convergence of Controls)

Assume that gδ is the optimal control associated with the nonlocal continuous
problem, and gδ,h be the discrete optimal control. Then we have the convergence

‖gδ − gδ,h‖2
L2(Ω;Rn) . ω(h) +

(
inf

vδ,h∈Xδ,h
[uδ − vδ,h]X(Ωδ ;Rn)

)2

+
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.

Proof



Discretization

Non-local Problem Convergence: Summary

Corollary (Full Norm Solution Convergence)

In the setting of our problem formulation,

‖uδ − uδ,h‖X(Ωδ ;Rn) . ω(h) + inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(Ωδ ;Rn)+

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn);

‖pδ−pδ,h‖X(Ωδ ;Rn) . ω(h)+ inf
vδ,h∈Xδ,h

‖p̂h−vδ,h‖X(Ωδ ;Rn)+ inf
vδ,h∈Xδ,h

‖ûδ−vδ,h‖X(Ωδ ;Rn)

+ inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn).



Discretization

Local Convergence Results

Theorem
Suppose (u, g) denotes the solution to the local continuous problem, while
(uh, gh) is the solution to the local discrete problem, and p and ph solve the
respective adjoint problems. We have the estimates

‖u − uh‖H1(Ω;Rn) . inf
vh∈Xh

[û − vh]H1(Ω;Rn) + ‖g − gh‖L2(Ω;Rn);

‖p − p‖H1(Ω;Rn) . inf
vh∈Xh

[p̂ − vh]H1(Ω;Rn) + inf
vh∈Xh

[û − vh]H1(Ω;Rn) + ‖g − gh‖L2(Ω;Rn).

‖g − gh‖L2(Ω;Rn) . h + inf
vh∈Xh

[p − vh]H1(Ω;Rn) + inf
vh∈Xh

[u − vh]H1(Ω;Rn).



Discretization

Discrete Analogues of Convergence

Proposition (Γ-convergence of discrete problems)

We have that Ẽδ
Γ−→ Ẽ0 in the family of spaces {Xδ,h}δ>0 in the strong L2(Ω;Rn)

topology.

Theorem (Discrete Convergence)

Suppose {(uδ,h, gδ,h)}δ>0 ∈ Aδh is the family of solutions to the non-local discrete
problem. Then, there is (uh, gh) ∈ Aloc

h such that uδ,h → uh in L2(Ω;Rn) and
gδ,h ⇀ gδ in L2(Ω;Rn). Moreover, (uh, gh) solves the local discrete optimal
control problem.
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Asymptotic compatibility

What is asymptotic compatibility?

Introduced by X. Tian and Q. Du (2014)
Originally developed for linear, non-local state equations
Unconditional convergence of approximations in both discretization and
horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions {uδ,h}δ,h>0 is
asymptotically compatible in δ, h > 0 if for any sequences {δk}∞k=1, {hk}∞k=1
with δk , hk → 0, we have that uδk ,hk → u0 strongly in some Hilbert space norm,
where u0 is the solution to a local, continuous problem.

uδ,h uh

uδ u

h→0+ k→∞

δ→0+

h→0+

δ→0+



Asymptotic compatibility

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control )

We say that the family of solutions {(uδ,h, gδ,h)}h>0,δ>0 to the nonlocal discrete
optimal control problem is asymptotically compatible in δ, h > 0 if for any
sequences {δk}∞k=1, {hk}∞k=1 with δk , hk → 0, we have that gδk ,hk ⇀ g weakly in
L2(Ω;Rn), and uδk ,hk → u strongly in L2(Ω;Rn). Here (u, g) ∈ H1

0 (Ω;Rn)× Zad
denotes the optimal solution for the local continuous problem.

NOTE: In particular, H1
0 (Ω;Rn) is the limiting space of X0(Ωδ;Rn) as δ → 0+

(uδ,h, gδ,h) (uh, gh)

(uδ, gδ) (u, g)

h→0+ k→∞

δ→0+

h→0+

δ→0+



Asymptotic compatibility

Asymptotic compatibility: result and notation

Theorem
Assume A is Lipschitz. Then, our family of optimal control problems is
asymptotically compatible as δ, h→ 0+.

Define Aδ : X0(Ωδ;Rn)→ (X0(Ωδ;Rn))∗ as the invertible operator such that

〈Aδu, v〉X∗0 ,X0 = Bδ(u, v) ∀u, v ∈ X0(Ωδ;Rn);

define A0 : H1
0 (Ω;Rn)→ H−1(Ω;Rn) as the invertible operator such that

〈A0u, v〉H−1,H1
0

= B0(u, v) ∀u, v ∈ H1
0 (Ω;Rn).



Asymptotic compatibility

Proof of asymptotic compatibility

Needed preliminaries:
1 Given a v ∈ H1

0 (Ω;Rn), and hk , δk → 0, we can find a sequence vk ∈ Xδk ,hk

such that vk → v strongly in H1(Ω;Rn) as k →∞.
2 For any sequences {δk}∞k=1, {hk}∞k=1 with δk , hk → 0, there exists a C > 0 so

that ‖uδk ,hk‖X(Ωδk ;Rn)≤ C uniformly in k ∈ N+.
3 We have that Aδu ∈ L2(Ω;Rn) and limδ→0+‖Aδu − A0u‖L2(Ω;Rn) = 0 for

each u ∈ C∞0 (Ω;Rn).
Pick sub-sequence of {(uk , gk , pk)}∞k=1 so there is a limit point
(u∗, g∗, p∗) ∈ H1

0 (Ω;Rn)× Zad × H1
0 (Ω;Rn) with convergence in appropriate

topology



Asymptotic compatibility

Proof of asymptotic compatibility (continued)

Step 1: Show that B0(u∗, ϕ) = 〈g∗, ϕ〉 for all ϕ ∈ H1
0 (Ω;Rn)

Pick ϕ ∈ C∞0 (Ω;Rn), let wk := Ikϕ (nodal interpolation), wk → ϕ in
W 1,∞(Ω;Rn), then compute limit as k →∞ of

Bδk (uk ,wk) = 〈Aδkϕ, uk〉X∗0 ,X0 + 〈Aδk (wk − ϕ), uk〉X∗0 ,X0 =: Ik + IIk .

Step 2: Show that B0(ϕ, p∗) = 〈u∗, ϕ〉 for all ϕ ∈ H1
0 (Ω;Rn)

Strategy is identical to Step 1!
Step 3: Show that g∗(x) = − 1

λPZad (p∗(x))
Recall that gk(x) = − 1

λPZad (Π0pk(x)), show Π0pk → p∗ strongly in L2(Ω;Rn)



Asymptotic compatibility

Proof of asymptotic compatibility (continued)

Step 4: Unraveling
Steps 1-3 and uniqueness of solutions to optimality system give u = u∗,
g = g∗, and p = p∗
This is the limit point reached for any sub-sequence of original sequence
Entire sequence of triples {(uk , gk , pk)}∞k=1 converges to (u, g , p)



Asymptotic compatibility

Recap and closing

Showed existence and uniqueness of minimizers
Considered behavior as δ → 0+

Discretized via FEAs
Studied simultaneous limit as δ, h→ 0+ (asymptotic compatibility)

Thank you! Questions?

ArXiV preprint: https://arxiv.org/pdf/2304.09328.pdf

https://arxiv.org/pdf/2304.09328.pdf 


Asymptotic compatibility

Auxiliary Lemmas

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that
c

|ξ|n+2s ≤
kδ(ξ)
|ξ|2

≤ C
|ξ|n+2s

holds for all ξ ∈ B(0, δ), for some s 6= 1
2 . Then necessarily gδ ∈ X (Ωδ;Rn).

Proof strategy:
Mengesha-Du 2016 says that Hs(Ωδ;Rn) = X (Ωδ;Rn) here
Use projection formula gδ(x) = − 1

λPZad (pδ(x))
This pointwise projection is continuous in Hs semi-norm but not X
semi-norm!
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Auxiliary Lemmas (continued)

Lemma (Approximation)

If w ∈ L2(Ωδ;Rn), then

‖Π0w − w‖L2(Ω;Rn) ≤ ω(h),

where Π0 : L2(Ωδ;Rn)→ Zh denotes the projection of a function onto the
piecewise constants with respect to the given mesh. If in fact w ∈ X (Ωδ;Rn) and
kδ satisfies the fractional inequality on B(0, δ) for some s 6= 1

2 , then

‖Π0w − w‖L2(Ω;Rn) . hs‖w‖X(Ωδ ;Rn).

Back
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Control Convergence (continued)

Galerkin Approximations:
qδ,h ∈ Xδ,h be the Galerkin approximation to pδ, i.e., the solution of

Bδ(vδ,h, qδ,h) = 〈uδ, vδ,h〉 ∀vδ,h ∈ Xδ,h.

Uδ,h ∈ Xδ,h for uδ:

Bδ(Uδ,h, vδ,h) = 〈gδ, vδ,h〉 ∀vδ,h ∈ Xδ,h.

rδ,h ∈ Xδ,h solves

Bδ(vδ,h, rδ,h) = 〈Uδ,h, vδ,h〉 ∀vδ,h ∈ Xδ,h.

Back



Asymptotic compatibility

Control Convergence (continued)

Let I1 := 〈pδ − pδ,h, gδ,h − gδ〉 and I2 := 〈pδ,h + λgδ,h,Π0gδ − gδ〉. Using
optimality conditions gives

λ‖gδ − gδ,h‖2
L2(Ω;Rn) ≤ I1 + I2.

I1 = 〈pδ − qδ,h, gδ,h − gδ〉+ 〈qδ,h − rδ,h, gδ,h − gδ〉+ 〈rδ,h − pδ,h, gδ,h − gδ〉 =:
I1,1 + I1,2 + I1,3.

By use of Galerkin approximations, find that I1,3 ≤ 0 and

I1,1 . ‖gδ,h − gδ‖L2(Ω;Rn) inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn);

I1,2 . ‖gδ,h − gδ‖L2(Ω;Rn) inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn).
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Control Convergence (continued)

By Young’s Inequality,

I1 ≤
λ

3 ‖gδ,h − gδ‖2
L2(Ω;Rn)+C

(
inf

vδ,h∈Xδ,h
[uδ − vδ,h]X(Ωδ ;Rn)

)2
+

C
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.
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Control Convergence (continued)

Now we write I2 as

〈pδ,h + λgδ,h,Π0gδ − gδ〉 = 〈pδ + λgδ,Π0gδ − gδ〉+ λ〈gδ,h − gδ,Π0gδ − gδ〉+
〈pδ,h − rδ,h,Π0gδ − gδ〉+ 〈rδ,h − qδ,h,Π0gδ − gδ〉+ 〈qδ,h − pδ,Π0gδ − gδ〉 =:
I2,1 + I2,2 + I2,3 + I2,4 + I2,5.



Asymptotic compatibility

Control Convergence (continued)

Use that Π0(pδ + λgδ) = 0 to estimate I2,1 as

I2,1 ≤ ω(h).

For I2,2, use Cauchy and stability:

I2,2 ≤
λ

3 ‖gδ,h − gδ‖2
L2(Ω;Rn)+ω(h),



Asymptotic compatibility

Control Convergence (continued)

For I2,3, use Galerkin approximations and the stabilty:

I2,3 ≤ ω(h)2 +
(

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn)

)2

For I2,4 and I2,5, use Ceá’s lemma and Cauchy:

I2,4 ≤ ω(h)2 +
(

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(Ωδ ;Rn)

)2
;

I2,5 ≤ ω(h)2 +
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.
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Control Convergence (continued)

Use Young’s Inequality and combine all the estimates to get

λ

3 ‖gδ − gδ,h‖2
L2(Ω;Rn) . ω(h)2 +

(
inf

vδ,h∈Xδ,h
[uδ − vδ,h]X(Ωδ ;Rn)

)2
+(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(Ωδ ;Rn)

)2
.

Back
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