How to walk to infinity on primes and square-free walks

Joshua Siktar
jsiktar@vols.utk.edu
(joint with Steven J. Miller, Fei Peng, Tudor Popescu, and Nawapan Wattanawanichkul)

2024 MAA Southeastern Sectional (Theory of Integer Sequences)

March 15, 2024

THE UNIVERSITY OF
TENNESSEE KNOXVILLE

What is a prime walk to infinity?

Question

Can we append digits to a number forever while staying prime?
This is a vague question, because we need to consider...
(1) Do we append digits to the left or right?

What is a prime walk to infinity?

Question

Can we append digits to a number forever while staying prime?
This is a vague question, because we need to consider...
(1) Do we append digits to the left or right?
(2) How many do we append at a time?

What is a prime walk to infinity?

Question

Can we append digits to a number forever while staying prime?
This is a vague question, because we need to consider...
(1) Do we append digits to the left or right?
(2) How many do we append at a time?
(3) Do we have to start with a one-digit number?

A Simple Case

Let $\mathscr{P} \subset \mathbb{N}^{+}$denote the set of all primes.

Proposition

If we append arbitrarily many digits at a time to the left, then we can walk to infinity.

Proof details:

- Let $p \in \mathscr{P} \backslash\{2,5\}$. Pick m large enough so $10^{m}>p$

A Simple Case

Let $\mathscr{P} \subset \mathbb{N}^{+}$denote the set of all primes.

Proposition

If we append arbitrarily many digits at a time to the left, then we can walk to infinity.

Proof details:

- Let $p \in \mathscr{P} \backslash\{2,5\}$. Pick m large enough so $10^{m}>p$
- There are infinitely many primes congruent to p modulo 10^{m}

A Simple Case

Let $\mathscr{P} \subset \mathbb{N}^{+}$denote the set of all primes.

Proposition

If we append arbitrarily many digits at a time to the left, then we can walk to infinity.

Proof details:

- Let $p \in \mathscr{P} \backslash\{2,5\}$. Pick m large enough so $10^{m}>p$
- There are infinitely many primes congruent to p modulo 10^{m}
- Can pick any sequence of them, append to the left of p

Why these sequences?

Definition (Square-Free Number)

A square-free number is an integer that is not divisible by any perfect square other than 1.

- The asymptotic density of the primes less than or equal to x is $\frac{1}{\log (x)} \rightarrow 0$ as $x \rightarrow \infty$
- However, the square-free numbers have asymptotic density $\frac{6}{\pi^{2}}$
- So, we are comparing a sequence with zero density to a sequence of positive density! One expects walks on square-free numbers to be "easier"

Computational Challenges

- Tree search (seeing all different possible digits to append)

So, we focus on stochastic models of walks to infinity and consider sequences with more structure

Computational Challenges

- Tree search (seeing all different possible digits to append)
- Factorization of large numbers (to check being prime or square-free)

So, we focus on stochastic models of walks to infinity and consider sequences with more structure

Computational Challenges

- Tree search (seeing all different possible digits to append)
- Factorization of large numbers (to check being prime or square-free)
- Primes have an erratic structure

So, we focus on stochastic models of walks to infinity and consider sequences with more structure

Game Plan

- Consider random appendages of digits in prime and square free walks
- Consider the walks in different bases
- Will focus on studying the distributions of the stochastic walks, especially expected values
- Important assumption: The sequence of numbers appended in a walk are considered independently of each other

Our First Algorithm:

Consider a prime walk in base b. If we are at the stage of having k digits, the probability a random digit is a legal appendage (to the right) is $\frac{1}{k \log (b)}$, so the probability that at least one of the b digits can legally be added is

$$
1-\left(1-\frac{1}{k \log b}\right)^{b}
$$

Algorithm (Blind Unlimited Prime Walk in Base b)

Choose one of the possible digits uniformly at random and check if the obtained number is prime; if it is not, stop and record the length; otherwise, continue the process.

Expected Length

Proposition (Blind Unlimited Prime Walk Lengths)

The theoretical expected length of a walk with a starting point at most s digits in base b is

$$
E\left[Y_{s, b}\right]:=\frac{1}{\frac{b^{s}}{s \log b}}\left(\sum_{r=1}^{s} \frac{(b-1) b^{r-1}}{r \log b}\left(\sum_{n=0}^{\infty} \prod_{k=r}^{n-1}\left(1-\left(1-\frac{1}{k \log b}\right)^{b}\right)\right)\right)
$$

Analysis of formula:

- The r denotes the number of digits in starting point
- The $\frac{(b-1) b^{r-1}}{r \log b}$ denotes approximate number of primes in base b with r digits
- Divide by $\frac{b^{s}}{s \log (b)}$, approximate number of primes in base b with at most s digits

Expected Prime Walk Length Data

Expected length of blind unlimited prime walks

Maximum number of starting digits	1	2	3	4	5	6	7
Base 2	5.20	9.90	11.62	11.45	10.40	9.08	7.79
Base 3	5.05	7.75	7.60	6.53	5.40	4.49	3.80
Base 4	4.87	6.55	5.86	4.79	3.92	3.29	2.85
Base 5	4.71	5.79	4.92	3.96	3.25	2.78	2.45
Base 6	4.57	5.27	4.34	3.48	2.89	2.49	2.22
Base 7	4.46	4.89	3.95	3.17	2.65	2.31	2.08
Base 8	4.37	4.59	3.67	2.95	2.49	2.19	1.98
Base 9	4.29	4.36	3.45	2.79	2.37	2.09	1.91
Base 10	4.22	4.17	3.28	2.66	2.28	2.20	1.85

Negative Prime Walks Result

Theorem

It is impossible to walk to infinity on primes in base 2 by appending no more than 2 digits at a time to the right.

Key step: Continuously appending 1 to a prime in base 2 creates a generalized Cunningham chain, which will have consecutive composite numbers. A
Cunningham Chain is defined via the formula $e_{i}:=2^{i} p+2^{i}-1$.

Theorem

It is impossible to walk to infinity on primes in bases $b \in\{3,4,5,6\}$ by appending just 1 digit at a time to the right.

Key step: Use Fermat's Little Theorem repeatedly on sequences of the form $p_{i}=b^{i-1} p+b^{i-1}-1$ for some prime p

Why Square-Free Numbers Give Hope

Definition (Square-Free Number)

A square-free number is an integer that is not divisible by any perfect square other than 1.

Can easily append digits to 2 , pick smallest possible to get square-free at each step:
$\{2,21,210,2101,21010,210101,2101010,21010101,210101010,2101010101$, 21010101010, 210101010101, 2101010101010, 2101010101010102, 210101010101021, 2101010101010210, 21010101010102101, ...\}.

- If $Q(x):=\mid\left\{k \in \mathbb{N}^{+}, k \leq x, k\right.$ is square-free $\} \mid$ then it is known that $Q(x) \sim \frac{6 x}{\pi^{2}}$
- When constructing square-free walks, we say each constructed number is square-free with probability $p:=\frac{6}{\pi^{2}}$

Blind Unlimited Square-Free Walks

Algorithm (Blind Unlimited Square-Free Walk)

Choose one digit uniformly at random from the set $\{0,1, \ldots, 9\}$ and append it: if the obtained number is not square-free, stop and record the length; otherwise, continue the process.

Experimental expected lengths of the square-free walks in base 10

Start has x digits	0	1	2	3	4	5	6
Blind unlimited square-free walk	1.68	2.79	2.76	2.72	2.71	2.71	2.71

Frequency of Digits

Comparing frequencies of digits of blind unlimited square-free walks in base 10

Number of digits of starting point	1	2	3	4	5	6
Add digit 0	10.1%	7.4%	7.6%	7.5%	7.5%	7.5%
Add digit 1	14.0%	13.6%	13.2%	13.4%	13.4%	13.4%
Add digit 2	8.4%	5.5%	5.3%	5.3%	5.3%	5.3%
Add digit 3	13.5%	13.5%	13.4%	13.4%	13.4%	13.3%
Add digit 4	5.1%	8.1%	8.0%	8.0%	8.0%	8.0%
Add digit 5	12.1%	10.8%	10.9%	10.8%	10.8%	10.8%
Add digit 6	8.3%	5.5%	5.4%	5.3%	5.3%	5.3%
Add digit 7	13.4%	13.5%	13.2%	13.3%	13.3%	13.3%
Add digit 8	4.9%	7.4%	8.0%	8.0%	8.0%	8.0%
Add digit 9	9.7%	14.2%	14.5%	14.6%	14.6%	14.6%

NOTE: odd digits appear more because can't have multiples of 4 the easiest square free killing entity

Walk to Infinity!

Theorem (Walking to Infinity on Square-Free Numbers)

Given we append one digit at a time (to the right), the probability that there is an infinite random square-free walk from any starting point is as least $1-I \approx 0.99991$. In other words, there is such a walk from almost any starting point.

Proof comments:

- Pick a square-free number, denote by P_{k} the probability that longest walk with that starting point has length at most k
- Recursive formula: $P_{k+1}=\left(1-p+p P_{k}\right)^{10}$
- See that $\lim _{k \rightarrow \infty} P_{k}=: \ell \approx 8.5950 \times 10^{-5}$

Important note: there do exist square-free numbers that are "dead ends," e.g. 231546210170694222

Concluding Remarks

Summary:

- The primes are a zero-density sequence while the square-free numbers have positive density
- Can't walk to infinity on primes if appending up to 2 digits a time in base 2, or in bases $3,4,5$, or 6 when appending 1 digit at a time
- Can walk to infinity randomly on square-free numbers from almost any starting point

Questions?

Email: jsiktar@vols.utk.edu
ArXiV Link: https://arxiv.org/pdf/2010.14932.pdf

