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What is Continuum Mechanics?

Definition (Continuum Mechanics)

Continuum mechanics is a classical differential equation model
used to describe the interaction and movement of particles in a
material

Features:
Comprises both solid and fluid mechanics
Assumes materials fill the entire body
Same makeup if material is divided into pieces
Adheres to Newton’s Second law (resulting in a PDE)
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What is Peridynamics?

Definition (Peridynamics)

Peridynamics (PD) is a nonlocal model for elasticity of solids that
uses integrals over derivatives, attributed to Stewart A. Silling

Features:
Exchanges derivatives in continuum models for integrals (helps
address crack formation)
Treats particles as having a bond between them
Range of interaction parameterized by δ, called horizon
Material parameters represented by h(x) (e.g., density)
Operator is elliptic (not parabolic or hyperbolic)
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Canonical Nonlocal Function Space: Fractional Sobolev Space

For s ∈ (0,1), define the function space

W s,2(Ω) :=

{
u ∈ L2(Ω),

|u(x)− u(y)|
|x − y | n2 +s ∈ L2(Ω× Ω)

}
with associated norm

‖u‖W s,2(Ω) := ‖u‖L2(Ω) +

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|x − y |n+2s dxdy
) 1

2

.

Inspired as an intermediary between L2(Ω) and W 1,2(Ω)

Theoretical properties inspire those for other nonlocal spaces
(continuous embeddings, Hilbert space theory, etc.)
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Formulation

Nonlocal equations [or systems] take the form{
Lδu = g, x ∈ Ω

u = 0, x ∈ Ωδ \ Ω

For our problem, kδ is a non-negative, radial, integrable kernel, and

Lδu(x) =
1
2

∫
Ωδ

H(x , y)
kδ(x − y)

|x − y |2
Du(x , y)dy

H(x , y) =
h(x) + h(y)

2
,0 < hmax ≤ h∞ <∞.

Projected difference (nonlocal linearized strain):

Du(x , y) := (u(x)− u(y)) · x − y
|x − y |
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Notation

Inner product:

Bh(u, v) :=

∫
Ωδ

∫
Ωδ

H(x , y)kδ(x − y)
Du(x , y)Dv(x , y)

|x − y |2
dxdy

Function spaces:

X (Ωδ;Rn) := {u ∈ L2(Ωδ;Rn),Bh(u,u) <∞}

∂X := {w |Ωδ\Ω,w ∈ X}

X0(Ωδ;Rn) := {u ∈ X ,u = 0 in Ωδ \ Ω}
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Existence-Uniqueness Theorem I

Theorem (Existence and Uniqueness)

For any u0 ∈ ∂X and g ∈ L2(Ω;Rn), ∃!u ∈ u0 + X0 such that the state
system

Bh(u,w) =

∫
Ω

g(x) · w(x), w ∈ X0.

is satisfied for all w ∈ X0. Furthermore, we have the stability estimate

‖u‖X ≤ C(‖ũ‖X + ‖g‖X∗)

for some C > 0 independent of δ, where ũ is an extension of u0 to all
of Ωδ.
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What is Optimal Control?

Definition

Optimal control is the study of minimizing cost functionals over
classes of ordered pairs, where the coordinates are controls and
states.

Features:
Control and state are typically linked by solution maps
Direct method often used to find existence of optimal controls
Physical/biological context motivates a constraint
Differential (or integral) equation constraints
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Formulation

Find (ū, ḡ) ∈ (u0 + X0)× L2 such that

Iδ(ū, ḡ) = min
g∈L2(Ω;Rn), u∈u0+X0(Ωδ ;Rn)

{∫
Ω

F (x ,u(x))dx +
λ

2
‖g‖2

L2(Ω;Rn)

}
,

where u and g satisfy

Bh(u,w) =

∫
Ω

g(x) · w(x), w ∈ X0.

Here g is an external force and u is displacement
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Sample Cost Functionals

Example

Object Fitting:

Iδ(u,g) :=

∫
Ω

(u(x)− udes(x))2 +
1
2
‖g‖2

L2(Ω;R3)

where udes is the optimal shaping of a material in R3 to fit in a hole

Example

Work: W = Fd from physics

Iδ(u,g) :=

∫
Ω

u(x) · g(x)dx
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Direct Method: Abstract Framework

Theorem

Let Zad be a nonempty, closed, bounded, and convex subset of Z .
The Banach Space optimization problem

min
g∈Zad

{
f (g) := G(Sg) +

λ

2
‖g‖p

Z

}
has an optimal solution ḡ if either of these conditions holds:

1 S : Z → Y be is compact, and G : Y → R is lower
semi-continuous

2 S : Z → Y be is continuous and G : Y → R is convex and lower
semi-continuous

Furthermore, if λ > 0, and G and S are linear on their respective
domains (or G is convex), then there is a unique minimizer
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Outline of Direct Method

Show cost functional is bounded from below
Pick a sequence of pairs approaching the infimum
Use compactness properties to obtain suitable sub-sequence
Show limit of sub-sequence satisfies constraint
Uniqueness: contradiction/convexity argument
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Carrying Out the Direct Method

Iδ(ū, ḡ) = min
g∈L2(Ω;Rn), u∈u0+X0(Ω;Rn)

{∫
Ω

F (x ,u(x))dx +
λ

2
‖g‖2

L2(Ω;Rn)

}
,

Show main term is bounded from below assuming boundedness
of Zad (oftentimes Zad = {z ∈ Z ,a ≤ z ≤ b})
Find minimizing sequence
Use compact embedding X0(Ωδ;Rn) ⊂⊂ L2(Ωδ;Rn) to get
convergence of sequences
Show limit satisfies the state equation
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What is Optimal Design?

Definition

Optimal design is an optimal control problem where a material is
chosen to adhere to a specific force-displacement behavior as closely
as possible

Prototypical design (scalar-valued):{
min(h,u)∈H×X0

∫
Ωδ

∫
Ωδ

F (x ′, x ,u′,u)dx ′dx
Lδ(u) = f (x) in Ω, u = 0 in Ωδ \ Ω
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