Analysis of Optimal Control and Optimal Design Problems in Peridynamics

Joshua Siktar jsiktar@vols.utk.edu

Wayne State Applied Math Seminar

February 28, 2024

DEPARTMENT OF MATHEMATICS

- Thanks to my co-advisors Abner Salgado and Tadele Mengesha for their continued mentorship and career support
- Thanks to Kosuke Sugita for organizing and inviting me!

Find $(\overline{u_{\delta}}, \overline{g_{\delta}}) \in X_0 \times Z_{ad}$ such that

$$I(\overline{u_{\delta}},\overline{g_{\delta}}) = \min_{u_{\delta} \in X_{0},g_{\delta} \in Z_{ad}} \left\{ \int_{\Omega} F(x,u_{\delta}(x)) dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x) |g_{\delta}(x)|^{2} dx \right\}.$$

The minimization is over pairs $(g_{\delta}, u_{\delta}) \in Z_{ad} \times X_0(\Omega_{\delta}; \mathbb{R}^n)$ that satisfy

$$B_{\delta,\mathfrak{A}}(u_{\delta},v) = \langle g_{\delta},v \rangle, \text{ for all } v \in X_0(\Omega_{\delta};\mathbb{R}^n).$$

Find $(\overline{\mathfrak{A}_{\delta}}, \overline{u_{\delta}}) \in \mathcal{H} \times X_0$ such that

$$J(\overline{\mathfrak{A}_{\delta}},\overline{u_{\delta}}) = \min_{\mathfrak{A}_{\delta}\in\mathcal{H},u_{\delta}\in X_{0}} \left\{ \int_{\Omega} F(x,u_{\delta}(x))dx + \iint_{\Omega\times\Omega} A(x,y,\mathfrak{A}_{\delta}(x,y))dxdy \right\}.$$

The minimization is over pairs $(\mathfrak{A}_{\delta}, u_{\delta}) \in \mathcal{H} \times X_0(\Omega_{\delta}; \mathbb{R}^n)$ that satisfy

$$B_{\delta,\mathfrak{A}_{\delta}}(u_{\delta},v) \;=\; \langle g,v
angle, ext{ for all } v \in X_{0}(\Omega_{\delta};\mathbb{R}^{n}).$$

Overarching Ideas

Notation

- **Optimal Control: Analysis**
- Optimal Control: Discretization
- Optimal Design: Analysis
 - Closing Remarks

Outline

Overarching Ideas

2 Notation

- Optimal Control: Analysis
- Optimal Control: Discretization
- Optimal Design: Analysis
- **O Closing Remarks**

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals over derivatives, attributed to Stewart A. Silling

Features:

- Exchanges derivatives in continuum models for integrals (helps address crack formation), making model inherently **nonlocal**
- Treats particles as having a bond between them (bond-based model)
- Range of interaction parameterized by δ , called **horizon**
- Material parameters represented by a(x) (e.g., density)
- Operator is elliptic (not parabolic or hyperbolic)

Overarching Ideas

Sample Candidate Integrand

Example:

$$F(x, u(x)) = |u(x) - u_{\text{des}}(x)|^2$$

where $u_{\rm des}$ is the optimal shape of the material in space to fit a predetermined hole as closely as possible

Optimal control versus optimal design

Similarities:

- Involve a minimization of a [cost] functional over pairs in a product function space
- Utilize tools of calculus of variations for abstract well-posedness
- Can be meaningfully cast in non-local settings
- Forces and displacements are vector-valued

Differences:

- Optimal control: material is fixed but force may vary
- Optimal design: force is fixed but material will vary
- Existence of candidate minimizers are proven using different tools (more on this later!)

Outline

Overarching Ideas

2 Notation

- Optimal Control: Analysis
- **Optimal Control: Discretization**
- Optimal Design: Analysis
- Closing Remarks

Notation

Notation

- Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, $\Omega_{\delta} := \Omega \cup \{x, dist(x, \partial \Omega) < \delta\}$
- $\Omega_{\delta} \setminus \Omega$ is non-local boundary
- $\mathcal{D}_{\delta} := (\Omega \times \Omega_{\delta}) \cup (\Omega_{\delta} \times \Omega)$
- Projected difference: $Du(x, y) := \frac{(u(x)-u(y))\cdot(x-y)}{|x-y|}$, nonlocal linearized strain (for vector-valued functions)
- $\bullet\,$ Our class of design coefficients, denoted by $\mathcal{H},$ is all coefficients of the form

$$\mathfrak{A}(x,y) := \frac{\mathfrak{a}(x) + \mathfrak{a}(y)}{2},$$

where there exist $a_{\min}, a_{\max} > 0$ so $a_{\min} \leq \mathfrak{a} \leq a_{\max}$ on Ω_{δ} .

Kernel sequence $\{k_{\delta}\}_{\delta>0}$ radial, integrable, non-negative, supported in $B(0, \delta)$, $k_{\delta}(r)r^{-2}$ is nonincreasing, and

$$\lim_{\delta\to 0^+}\int_{\mathbb{R}^n}k_{\delta}(\xi)d\xi = \delta_0$$

Also, for all $\delta > 0$:

$$\int_{\mathbb{R}^n} k_\delta(\xi) d\xi ~=~ 1$$

$$\lim_{t\to\infty}\int_{\mathbb{R}^n\setminus B(0,t)}k_{\delta}(\xi)d\xi = 0$$

Notation

Nonlocal bi-linear form:

$$B_{\delta,\mathfrak{A}}(u,v) := \frac{1}{2} \iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x,y) k_{\delta}(x-y) \frac{Du(x,y)}{|x-y|} \frac{Dv(x,y)}{|x-y|} dx dy$$

Local bi-linear form:

$$B_{0,\mathfrak{A}}(u,v) := C(n) \int_{\Omega} \mathfrak{a}(x) (2\langle \operatorname{Sym}(\bigtriangledown u), \operatorname{Sym}(\bigtriangledown v) \rangle_F + \operatorname{div}(u) \operatorname{div}(v)) dx,$$

with $C(n) = \frac{1}{(n+2)(n+4)}$

Inner products denoted $\langle\cdot,\cdot\rangle_{\it Y}$; $L^2\text{-inner product denoted }\langle\cdot,\cdot\rangle$

Our function space is based on $B_{\delta,\mathfrak{A}}$:

$$X(\Omega_{\delta};\mathbb{R}^{n}):=\{u|_{\Omega}\in L^{2}(\Omega;\mathbb{R}^{n}), B_{\delta,\mathfrak{A}}(u,u)<\infty\}$$

Version with zero non-local boundary data:

$$X_0(\Omega_{\delta}; \mathbb{R}^n) := \{ u \in X(\Omega_{\delta}; \mathbb{R}^n), u = 0 \text{ in } \Omega_{\delta} \setminus \Omega \}$$

Outline

Overarching Ideas

2 Notation

Optimal Control: Analysis

- Optimal Control: Discretization
- Optimal Design: Analysis
- Closing Remarks

The following hold:

- The space $C_0^{\infty}(\Omega; \mathbb{R}^n)$ is dense in $X_0(\Omega_{\delta}; \mathbb{R}^n)$
- Functions in $X_0(\Omega_{\delta}; \mathbb{R}^n)$ can be extended by zero to obtain functions in $X(\mathbb{R}^n; \mathbb{R}^n)$
- Compact embedding: $X(\Omega_{\delta}; \mathbb{R}^n) \Subset L^2(\Omega; \mathbb{R}^n)$

NOTE: The first two statements become open questions if we remove the boundary data

Preliminaries (continued)

Proposition (Nonlocal Poincaré-Korn (Mengesha-Du 2014))

There exists a $\delta_0 > 0$ and a constant $C(\delta_0) > 0$ such that for all $\delta \in (0, \delta_0]$ and $u \in X_0(\Omega_{\delta}; \mathbb{R}^n)$,

$$\|u\|_{L^2(\Omega;\mathbb{R}^n)}^2 \leq C(\delta_0) \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} k_{\delta}(x-y) \frac{|Du(x,y)|^2}{|x-y|^2} dx dy.$$

NOTE: Independence of constant from δ will be important when we send $\delta \rightarrow 0^+$

State equation is well-posed!

Theorem (Existence and Uniqueness for State Equation)

For any $g_{\delta} \in L^{2}(\Omega; \mathbb{R}^{n})$, there exists a unique $u_{\delta} \in X_{0}(\Omega_{\delta}; \mathbb{R}^{n})$ such that the state system

$$B_{\delta,\mathfrak{A}}(u_{\delta},w_{\delta}) = \langle g_{\delta},w_{\delta} \rangle$$

is satisfied for all $w_{\delta} \in X_0$. Furthermore, we have the stability estimate

$$\|u_{\delta}\|_{X(\Omega_{\delta};\mathbb{R}^{n})}\lesssim \|g_{\delta}\|_{X(\Omega_{\delta};\mathbb{R}^{n})^{*}}$$

for some constant independent of δ .

Minimization Problem

Goal: find $(\overline{u_{\delta}}, \overline{g_{\delta}}) \in X_0 \times L^2$ minimizing

$$I(u_{\delta},g_{\delta}) = \int_{\Omega} F(x,u_{\delta}(x)) dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x) |g_{\delta}(x)|^2 dx$$

subject to: $\lambda \ge 0$, $g_{\delta} \in Z_{ad} \subset L^2$ and $(u_{\delta}, g_{\delta}) \in X_0 \times L^2$ solving

$$B_{\delta}(u_{\delta},v_{\delta}) = \int_{\Omega} g_{\delta}(x) \cdot v_{\delta}(x) dx \quad \forall v_{\delta} \in X_{0}$$

Cost Functional Assumptions

$$I(u,g) := \int_{\Omega} F(x,u(x))dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x)|g(x)|^2 dx$$

Here Z_{ad} is a nonempty, closed, convex, and bounded subset of $L^2(\Omega; \mathbb{R}^n)$, taking the form

$$Z_{\mathsf{ad}} = \{ z \in L^2(\Omega; \mathbb{R}^n), a \leq z \leq b \}$$

Here $[a]_i \leq [b]_i$ for all $i \in \{1, 2, ..., n\}$ with $a = ([a]_1, ..., [a]_n)$ and $b = ([b]_1, ..., [b]_n)$ being vector fields in $L^2(\Omega; \mathbb{R}^n)$, $\lambda \geq 0$, and $\Gamma \in L^{\infty}(\Omega)$ is positive.

Cost Functional Assumptions (continued)

The integrand $F: \Omega \times \mathbb{R}^n \to \mathbb{R}$ possesses the following properties:

- For all $v \in \mathbb{R}^n$ the mapping $x \mapsto F(x, v)$ is measurable;
- **2** For all $x \in \Omega$ the mapping $v \mapsto F(x, v)$ is continuous and convex;
- There exist $c_1 > 0$ and $\ell \in L^1(\Omega)$

$$|F(x,v)| \le c_1 |v|^2 + \ell(x)$$

for all $x \in \Omega$, $v \in \mathbb{R}^n$.

Well-posedness of optimal control problem

Theorem (Well-posedness)

There exists $(\overline{u_{\delta}}, \overline{g_{\delta}}) \in X_0(\Omega_{\delta}; \mathbb{R}^n) \times Z_{ad}$ minimizing

$$I(u_{\delta},g_{\delta}) = \int_{\Omega} F(x,u_{\delta}(x)) dx + \frac{\lambda}{2} \int_{\Omega} \Gamma(x) |g_{\delta}(x)|^2 dx,$$

where $\overline{u_{\delta}} \in X_0$ solves

$$B_{\delta,\mathfrak{A}}(u_{\delta},v_{\delta})=\int_{\Omega}g_{\delta}(x)\cdot v_{\delta}(x)dx\quad orall v_{\delta}\in X_{0}$$

Furthermore, if F is strictly convex or $\lambda > 0$, then the minimizer is unique.

Use compactness to apply direct method

Let S_{δ} denote solution operator for state equation **Non-local continuous optimality conditions** (including adjoint):

$$\begin{aligned} \overline{u_{\delta}} &= S_{\delta}\overline{g_{\delta}} \\ \overline{p_{\delta}} &= S_{\delta}^*F_u(\cdot,\overline{u_{\delta}}) &= S_{\delta}F_u(\cdot,\overline{u_{\delta}}) \\ \langle \overline{p_{\delta}} + \lambda \overline{g_{\delta}}, \gamma_z - \overline{g_{\delta}} \rangle_{L^2} &\geq 0, \quad \forall \gamma_z \in Z_{ad}. \end{aligned}$$

Projection formula:

$$\overline{g_{\delta}}(x) = \mathbb{P}_{Z_{ad}}\left(-\frac{1}{\lambda}\overline{p_{\delta}}(x)\right)$$

NOTE: No second-order optimality conditions needed (strict convexity!)

Convergence of state equation as $\delta \rightarrow 0^+$

Local bi-linear form (of Navier-Lamé system of linear elasticity)

$$B_{0,\mathfrak{A}}(u,v) := C(n) \int_{\Omega} \mathfrak{a}(x) (2\langle \operatorname{Sym}(\nabla u), \operatorname{Sym}(\nabla v) \rangle_{F} + \operatorname{div}(u) \operatorname{div}(v)) dx$$

where $C(n) := \frac{1}{(n+2)(n+4)}$.

Theorem

Suppose $\{(\overline{u_{\delta}}, \overline{g_{\delta}})\}_{\delta>0}$ is the family of solutions to the non-local problem. Then, there is $(\overline{u}, \overline{g})$ such that $\overline{u_{\delta}} \to \overline{u}$ in $L^2(\Omega; \mathbb{R}^n)$ and $\overline{g_{\delta}} \to \overline{g}$ in $L^2(\Omega; \mathbb{R}^n)$. Moreover, $(\overline{u}, \overline{g})$ solves the local optimal control problem.

Local state equation that $(\overline{u}, \overline{g})$ satisfies the constraint:

$$B_{0,\mathfrak{A}}(u,v) = \int_{\Omega} g(x) \cdot v(x) dx$$

Outline

Overarching Ideas

2 Notation

Optimal Control: Analysis

Optimal Control: Discretization

Optimal Design: Analysis

Closing Remarks

Nonlocal discrete problem statement

Find $(\overline{u_{\delta,h}},\overline{g_{\delta,h}}) \in X_{\delta,h} \times Z_h$ such that

$$I(\overline{u_{\delta,h}},\overline{g_{\delta,h}}) = \min_{u_{\delta,h}\in X_{\delta,h}, g_{\delta,h}\in Z_h} I(u_{\delta,h}, g_{\delta,h}),$$

over pairs $(u_{\delta,h},g_{\delta,h})\in X_{\delta,h} imes Z_h$ that satisfy

$$B_{\delta,\mathfrak{A}}(u_{\delta,h},v_{\delta,h}) = \langle g_{\delta,h},v_{\delta,h} \rangle, \quad \forall v_{\delta,h} \in X_{\delta,h}.$$

Recap:

$$I(u_{\delta,h},g_{\delta,h}) := \int_{\Omega} F(x,u_{\delta,h}(x)) dx + \frac{\lambda}{2} \|g_{\delta,h}\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2}$$

Henceforth assume $\Gamma\equiv 1$

Local discrete problem statement

Find $(\overline{u_h}, \overline{g_h}) \in X_h \times Z_h$ such that

$$I(\overline{u_h},\overline{g_h}) = \min_{u_h\in X_h, g_h\in Z_h} I(u_h,g_h),$$

over pairs $(u_h, g_h) \in X_h \times Z_h$ that satisfy

$$B_{0,\mathfrak{A}}(u_h, v_h) = \langle g_h, v_h \rangle, \quad \forall v_h \in Z_h.$$

Finite element method notation

- Mesh family: $\{\mathscr{T}_h\}_{h>0}$ (discretizing Ω_{δ}) shape-regular and quasi-uniform
- Piecewise polynomials of degree *m* (with respect to our mesh):

$$\mathcal{P}_m(T;\mathbb{R}^n) := \left\{ \sum_{\alpha \in \mathbb{N}_0^n : \sum_{i=1}^n \alpha_i \leq m} v_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n} \middle| v_\alpha \in \mathbb{R}^n, \ (x_i)_{i=1}^n \in T \right\}$$

- Discretized state space: $X_{\delta,h} := X_h := \{w_h \in C^0(\overline{\Omega_\delta}; \mathbb{R}^n) \mid w_h|_T \in \mathcal{P}_1(T; \mathbb{R}^n) \ \forall T \in \mathscr{T}_h, w_h = 0 \text{ on } \Omega_\delta \setminus \Omega \}$
- Discretized control space: $Z_h := \{z_h | T \in \mathcal{P}_0(T; \mathbb{R}^n) \ \forall T \in \mathscr{T}_h\}$
- $\Pi_0: Z_{ad} \rightarrow Z_h$ is piecewise constant projection by averages on each triangle

Optimality Conditions (discretized)

Non-local discrete optimality conditions (including adjoint)

$$\begin{array}{lll} \langle \overline{p_{\delta,h}} + \lambda \overline{g_{\delta,h}}, \gamma_h - \overline{g_{\delta,h}} \rangle & \geq & 0, \quad \forall \gamma_h \in Z_{\mathsf{ad}} \cap Z_h \\ \overline{p_{\delta,h}} & = & S^*_{\delta,h} F_u(\cdot, \overline{u_{\delta,h}}) & = & S_{\delta,h} F_u(\cdot, \overline{u_{\delta,h}}) \\ & \overline{u_{\delta,h}} & = & S_{\delta,h} \overline{g_{\delta,h}}. \end{array}$$

Projection formula:

$$\overline{g_{\delta,h}}(x) = \mathbb{P}_{Z_{ad}}\left(-\frac{1}{\lambda}\Pi_0 \overline{p_{\delta,h}}(x)\right)$$

Intermediary Functions

By Lax-Milgram, we may define $\widehat{u_{\delta}}, \widehat{p_{\delta}} \in X_0(\Omega_{\delta}; \mathbb{R}^n)$ such that

$$B_{\delta,\mathfrak{A}}(\widehat{u_{\delta}},v_{\delta}) = \langle \overline{g_{\delta,h}},v_{\delta} \rangle \quad \forall v_{\delta} \in X_0(\Omega_{\delta};\mathbb{R}^n);$$

$$\mathcal{B}_{\delta,\mathfrak{A}}(v_{\delta},\widehat{p_{\delta}}) \;=\; \langle v_{\delta},\overline{u_{\delta,h}}
angle \qquad orall v_{\delta} \in X_0(\Omega_{\delta};\mathbb{R}^n);$$

also define $\widehat{u_h}, \widehat{p_h} \in H^1_0(\Omega; \mathbb{R}^n)$ such that

$$\begin{split} B_{0,\mathfrak{A}}(\widehat{u_h}, v) &= \langle \overline{g_h}, v \rangle \quad \forall v \in H_0^1(\Omega; \mathbb{R}^n); \\ B_{0,\mathfrak{A}}(v, \widehat{p_h}) &= \langle v, \widehat{u_h} \rangle \quad \forall v \in H_0^1(\Omega; \mathbb{R}^n). \end{split}$$

State and Adjoint Error Estimates

Theorem (State and Adjoint Error Estimates)

Suppose that $(\overline{u_{\delta,h}}, \overline{g_{\delta,h}})$ is the solution to the non-local discrete problem, $\overline{p_{\delta,h}}$ solves the discrete adjoint equation given $\overline{u_{\delta,h}}$; $(\overline{u_{\delta}}, \overline{g_{\delta}})$ is the solution to the nonlocal continuous problem; and $\overline{p_{\delta}}$ solves the continuous adjoint equation given $\overline{u_{\delta}}$. Then

$$\|\overline{u_{\delta}}-\overline{u_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})}\lesssim \inf_{v_{\delta,h}\in X_{\delta,h}}\|\widehat{u_{\delta}}-v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})}+\|\overline{g_{\delta}}-\overline{g_{\delta,h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})};$$

$$\begin{split} \|\overline{p_{\delta}} - \overline{p_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} &\lesssim \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{p_{\delta}} - v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{u_{\delta}} - v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \\ \|\overline{g_{\delta}} - \overline{g_{\delta,h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})}. \end{split}$$

Auxiliary lemmas

Lemma (Regularity of Control for Fractional-Type Kernels)

Suppose that

$$rac{\kappa_{\delta}(\xi)}{|\xi|^2} \sim rac{1}{|\xi|^{n+2s}}$$

holds for all $\xi \in B(0, \delta)$, for some $s \neq \frac{1}{2}$. Then necessarily $\overline{g_{\delta}} \in X(\Omega_{\delta}; \mathbb{R}^{n})$.

Recall Fractional Sobolev Space (special case of our kernels):

$$H^{s}(\Omega_{\delta};\mathbb{R}^{n}) := \left\{ u|_{\Omega} \in L^{2}(\Omega;\mathbb{R}^{n}), \frac{|u(x) - u(y)|}{|x - y|^{\frac{n}{2} + s}} \in L^{2}(\Omega_{\delta} \times \Omega_{\delta}) \right\}$$

Proof strategy:

- Mengesha-Du 2016 says that $H^{s}(\Omega_{\delta}; \mathbb{R}^{n}) = X(\Omega_{\delta}; \mathbb{R}^{n})$ here
- Use projection formula $\overline{g_{\delta}}(x) = -\frac{1}{\lambda} \mathbb{P}_{Z_{ad}}(\overline{p_{\delta}}(x))$
- This pointwise projection is continuous in *H^s* semi-norm but not *X* semi-norm!

Theorem (Convergence of Controls)

Assume that $\overline{g_{\delta}}$ is the optimal control associated with the nonlocal continuous problem, and $\overline{g_{\delta,h}}$ be the discrete optimal control. Then we have the convergence

$$egin{aligned} \|\overline{g_{\delta}}-\overline{g_{\delta,h}}\|_{L^2(\Omega;\mathbb{R}^n)} \lesssim & \omega(h) + \inf_{\substack{ extstyle imes X_{\delta,h}}} [\overline{u_{\delta}}- extstyle v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^n)} \ & + \inf_{\substack{ extstyle imes X_{\delta,h}}} [\overline{p_{\delta}}- extstyle v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^n)}. \end{aligned}$$

Non-local Problem Convergence: Summary

Corollary (Full Norm Solution Convergence)

In the setting of our problem formulation,

$$\begin{split} \|\overline{u_{\delta}} - \overline{u_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \lesssim & \omega(h) + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{u_{\delta}} - v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \\ & \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}} - v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}; \end{split}$$

$$\begin{split} \|\overline{p_{\delta}}-\overline{p_{\delta,h}}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} &\lesssim \ \omega(h) + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{p_{h}}-v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} \|\widehat{u_{\delta}}-v_{\delta,h}\|_{X(\Omega_{\delta};\mathbb{R}^{n})} \\ &+ \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{u_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})} + \inf_{v_{\delta,h} \in X_{\delta,h}} [\overline{p_{\delta}}-v_{\delta,h}]_{X(\Omega_{\delta};\mathbb{R}^{n})}. \end{split}$$

Local Convergence Results

Theorem

Suppose $(\overline{u}, \overline{g})$ denotes the solution to the local continuous problem, while $(\overline{u_h}, \overline{g_h})$ is the solution to the local discrete problem, and \overline{p} and $\overline{p_h}$ solve the respective adjoint problems. We have the estimates

$$\begin{split} \|\overline{u}-\overline{u_{h}}\|_{H^{1}(\Omega;\mathbb{R}^{n})} &\lesssim \inf_{v_{h}\in X_{h}} [\widehat{u}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})} + \|\overline{g}-\overline{g_{h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})};\\ \|\overline{p}-\overline{p}\|_{H^{1}(\Omega;\mathbb{R}^{n})} &\lesssim \inf_{v_{h}\in X_{h}} [\widehat{p}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})} + \inf_{v_{h}\in X_{h}} [\widehat{u}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})} + \|\overline{g}-\overline{g_{h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})}.\\ \|\overline{g}-\overline{g_{h}}\|_{L^{2}(\Omega;\mathbb{R}^{n})} &\lesssim h + \inf_{v_{h}\in X_{h}} [\overline{p}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})} + \inf_{v_{h}\in X_{h}} [\overline{u}-v_{h}]_{H^{1}(\Omega;\mathbb{R}^{n})}. \end{split}$$

Optimal Control: Discretization

Discrete Analogues of Convergence

Theorem (Discrete Convergence)

Suppose $\{(\overline{u_{\delta,h}}, \overline{g_{\delta,h}})\}_{\delta>0}$ is the family of solutions to the non-local discrete problem. Then, there is $(\overline{u_h}, \overline{g_h})$ such that $\overline{u_{\delta,h}} \to \overline{u_h}$ in $L^2(\Omega; \mathbb{R}^n)$ and $\overline{g_{\delta,h}} \to \overline{g_h}$ in $L^2(\Omega; \mathbb{R}^n)$. Moreover, $(\overline{u_h}, \overline{g_h})$ solves the local discrete optimal control problem.

Optimal Control: Discretization

What is asymptotic compatibility?

- Introduced by X. Tian and Q. Du (2014)
- Originally developed for linear, non-local state equations

 $\mathcal{L}_{\delta,h}u_{\delta,h}=f$

• Unconditional convergence of approximations in both discretization and horizon parameters

Definition (Asymptotic Compatibility)

Given fixed data f in a Hilbert Space, the family of solutions $\{u_{\delta,h}\}_{\delta,h>0}$ is **asymptotically compatible** in $\delta, h > 0$ if for any sequences $\{\delta_k\}_{k=1}^{\infty}, \{h_k\}_{k=1}^{\infty}$ with $\delta_k, h_k \to 0$, we have that $u_{\delta_k,h_k} \to u_0$ strongly in some Hilbert space norm, where u_0 is the solution to a local, continuous problem.

What is asymptotic compatibility? (continued)

Definition (Asymptotic Compatibility for Optimal Control)

We say that the family of solutions $\{(\overline{u_{\delta,h}}, \overline{g_{\delta,h}})\}_{h>0,\delta>0}$ to the nonlocal discrete optimal control problem is **asymptotically compatible** in $\delta, h > 0$ if for any sequences $\{\delta_k\}_{k=1}^{\infty}, \{h_k\}_{k=1}^{\infty}$ with $\delta_k, h_k \to 0$, we have that $\overline{g_{\delta_k,h_k}} \to \overline{g}$ strongly in $L^2(\Omega; \mathbb{R}^n)$, and $\overline{u_{\delta_k,h_k}} \to \overline{u}$ strongly in $L^2(\Omega; \mathbb{R}^n)$. Here $(\overline{u}, \overline{g}) \in H_0^1(\Omega; \mathbb{R}^n) \times Z_{ad}$ denotes the optimal solution for the local continuous problem.

Theorem

Assume \mathfrak{A} is Lipschitz. Then, our family of optimal control problems is asymptotically compatible as $\delta, h \to 0^+$.

Asymptotic compatibility: result and notation

Define $A_{\delta}: X_0(\Omega_{\delta}; \mathbb{R}^n) \to (X_0(\Omega_{\delta}; \mathbb{R}^n))^*$ as the invertible operator such that

$$\langle A_{\delta} u, v \rangle_{X_0^*, X_0} = B_{\delta, \mathfrak{A}}(u, v) \quad \forall u, v \in X_0(\Omega_{\delta}; \mathbb{R}^n);$$

define $A_0: H^1_0(\Omega; \mathbb{R}^n) \to H^{-1}(\Omega; \mathbb{R}^n)$ as the invertible operator such that

$$\langle A_0 u, v \rangle_{H^{-1}, H^1_0} = B_{0, \mathfrak{A}}(u, v) \quad \forall u, v \in H^1_0(\Omega; \mathbb{R}^n).$$

Proof of asymptotic compatibility

Needed preliminaries:

- Given a $v \in H^1_0(\Omega; \mathbb{R}^n)$, and $h_k, \delta_k \to 0$, we can find a sequence $v_k \in X_{\delta_k, h_k}$ such that $v_k \to v$ strongly in $H^1(\Omega; \mathbb{R}^n)$ as $k \to \infty$.
- Our For any sequences {δ_k}[∞]_{k=1}, {h_k}[∞]_{k=1} with δ_k, h_k → 0, there exists a C > 0 so that ||u_{δ_k,h_k}||_{X(Ωδ_k;ℝⁿ)} ≤ C uniformly in k ∈ N⁺.
- Solution We have that A_δu ∈ L²(Ω; ℝⁿ) and lim_{δ→0⁺} ||A_δu − A₀u||_{L²(Ω;ℝⁿ)} = 0 for each u ∈ C₀[∞](Ω; ℝⁿ).

Pick sub-sequence of $\{(\overline{u_k}, \overline{g_k}, \overline{p_k})\}_{k=1}^{\infty}$ so there is a limit point $(u_*, g_*, p_*) \in H_0^1(\Omega; \mathbb{R}^n) \times Z_{ad} \times H_0^1(\Omega; \mathbb{R}^n)$ with convergence in appropriate topology (weak convergence of controls)

Proof of asymptotic compatibility (continued)

Step 1: Show that $B_{0,\mathfrak{A}}(u_*, \varphi) = \langle g_*, \varphi \rangle$ for all $\varphi \in H_0^1(\Omega; \mathbb{R}^n)$ Pick $\varphi \in C_0^{\infty}(\Omega; \mathbb{R}^n)$, let $w_k := I_k \varphi$ (nodal interpolation), $w_k \to \varphi$ in $W^{1,\infty}(\Omega; \mathbb{R}^n)$, then compute limit as $k \to \infty$ of

$$B_{\delta_k,\mathfrak{A}}(\overline{u_k},w_k) = \langle A_{\delta_k}\varphi, \overline{u_k}\rangle_{X_0^*,X_0} + \langle A_{\delta_k}(w_k-\varphi), \overline{u_k}\rangle_{X_0^*,X_0} =: I_k + II_k$$

Step 2: Show that $B_{0,\mathfrak{A}}(\varphi, p_*) = \langle u_*, \varphi \rangle$ for all $\varphi \in H_0^1(\Omega; \mathbb{R}^n)$ Strategy is identical to Step 1!

Step 3: Show that $g_*(x) = \mathbb{P}_{Z_{ad}}\left(-\frac{1}{\lambda}p_*(x)\right)$ Recall that $\overline{g_k}(x) = \mathbb{P}_{Z_{ad}}\left(-\frac{1}{\lambda}\Pi_0\overline{p_k}(x)\right)$, show $\Pi_0\overline{p_k} \to p_*$ strongly in $L^2(\Omega; \mathbb{R}^n)$

Proof of asymptotic compatibility (continued)

Step 4: Unraveling

- Steps 1-3 and uniqueness of solutions to optimality system give $\overline{u}=u_*,$ $\overline{g}=g_*,$ and $\overline{p}=p_*$
- This is the limit point reached for any sub-sequence of original sequence
- Entire sequence of triples $\{(\overline{u_k}, \overline{g_k}, \overline{p_k})\}_{k=1}^{\infty}$ converges to $(\overline{u}, \overline{g}, \overline{p})$

Step 5: Strong convergence of controls Use the Lipschitz property of the projection and the estimate

$$\|\overline{g_k} - \overline{g}\|_{L^2(\Omega;\mathbb{R}^n)} \lesssim \|\overline{p} - \Pi_0 \overline{p}\|_{L^2(\Omega;\mathbb{R}^n)} + \|\Pi_0 \overline{p} - \Pi_0 \overline{p_k}\|_{L^2(\Omega;\mathbb{R}^n)}$$

Outline

Overarching Ideas

2 Notation

Optimal Control: Analysis

Optimal Control: Discretization

Optimal Design: Analysis

Closing Remarks

If we have the family of problems

$$\begin{cases} -\operatorname{div}(A_j \bigtriangledown u_j) = f, \text{ in } \Omega \\ u_j = 0 & \text{ on } \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^n$ is bounded, $f \in H^{-1}(\Omega)$, and $\{A_j\}_{j=1}^{\infty}$ are symmetric and uniformly coercive matrices, we want to find a homogenized limit, i.e. a pair (A, u) solving

$$\begin{cases} -\operatorname{div}(A \bigtriangledown u) = f, \text{ in } \Omega\\ u = 0 \qquad \text{ on } \partial\Omega \end{cases}$$

More notation

Nonlocal gradient:

$$D_{k_{\delta}}u(x,y) := k_{\delta}(x-y)^{\frac{1}{2}} \frac{Du(x,y)}{|x-y|},$$

Nonlocal flux (for $\mathfrak{A} \in \mathcal{H}$):

$$\Psi_{\delta,\mathfrak{A}}u(x,y) := \mathfrak{A}(x,y)k_{\delta}(x-y)^{\frac{1}{2}}\frac{Du(x,y)}{|x-y|},$$

NOTE: This is a nonlocal analogue of the quantity $-\operatorname{div}(A \bigtriangledown u)$ in homogenization problems! Nonlocal divergence operator:

$$d_{k_{\delta}}\phi(x) := PV \int_{\Omega_{\delta}} \frac{k_{\delta}(x-y)^{\frac{1}{2}}}{|x-y|} (\phi(x,y) + \phi(y,x)) \frac{x-y}{|x-y|} dy$$

Structural Lemmas

Lemma

If $\{\mathfrak{A}_j\}_{i=1}^{\infty} \subset \mathcal{H}$ is such that $\mathfrak{A}_j \xrightarrow{*} \mathfrak{A}$ weak-* $L^{\infty}(\Omega_{\delta} \times \Omega_{\delta})$, then $\mathfrak{A} \in \mathcal{H}$.

Lemma (Nonlocal Integration by Parts)

If $\phi \in L^2(\Omega_{\delta} \times \Omega_{\delta})$, then $d_{k_{\delta}}\phi$ belongs to $X(\Omega_{\delta}; \mathbb{R}^n)^*$. In addition, if $u \in X(\Omega_{\delta}; \mathbb{R}^n)$, we have the following integration by parts formula:

$$\int_{\Omega_{\delta}} \int_{\Omega_{\delta}} \phi(x, y) D_{k_{\delta}} u(x, y) dx dy = \langle d_{k_{\delta}} \phi, u \rangle.$$

Well-posedness of state equation

Proposition

For any $\mathfrak{A} \in \mathcal{H}$, the state equation has a unique solution $u_{\delta} \in X_0(\Omega_{\delta}; \mathbb{R}^n)$, characterized by the minimization $u_{\delta} := \operatorname{argmin}_{v \in X_0(\Omega_{\delta}; \mathbb{R}^n)} \mathscr{J}_{\mathfrak{A}}^{\delta}(v)$, where

$$\mathscr{J}^{\delta}_{\mathfrak{A}}(u) := \frac{1}{2} \iint_{\mathcal{D}_{\delta}} \mathfrak{A}(x,y) k_{\delta}(|x-y|) \left| \frac{Du(x,y)}{|x-y|} \right|^2 dx dy - \int_{\Omega} g(x) \cdot u(x) dx$$

Furthermore, the minimizer satisfies the estimate

$$\|u_{\delta}\|_{X(\Omega_{\delta};\mathbb{R}^n)} \lesssim \|g\|_{L^2(\Omega_{\delta};\mathbb{R}^n)},$$

where the implicit constant is independent of δ .

Nonlocal *G*-convergence

Theorem (Nonlocal *G*-convergence)

If $\{\mathfrak{A}_{\delta,j}\}_{j=1}^{\infty} \subset \mathcal{H}$ is such that $\mathfrak{A}_{\delta,j} \stackrel{*}{\longrightarrow} \mathfrak{A}_{\delta}$ in the weak-* $L^{\infty}(\Omega_{\delta} \times \Omega_{\delta})$ topology, then $u_{\delta,j} \rightharpoonup u_{\delta}$ weakly in $X(\Omega_{\delta}; \mathbb{R}^{n})$, where $u_{\delta,j} := \mathcal{L}_{\delta,\mathfrak{A}_{\delta,i}}^{-1}g$ and $u_{\delta} := \mathcal{L}_{\delta,\mathfrak{A}_{\delta}}^{-1}g$.

- Use boundedness of sequence $\{u_{\delta,j}\}_{j=1}^{\infty}$ to produce a weak limit $\widetilde{u_{\delta}}$
- Use weak-* convergence to prove $\lim_{j\to\infty} \mathscr{J}^{\delta}_{\mathfrak{A}_{\delta,i}}(u_{\delta,j}) \leq \mathscr{J}^{\delta}_{\mathfrak{A}_{\delta}}(\widetilde{u_{\delta}}).$
- Use Generalized Fatou's Lemma to prove reverse inequality
- Use uniqueness of minimizers of $\mathscr{J}_{\mathfrak{A}}^{\delta}$ to conclude

NOTE: Such a result does not hold in the local setting!

Nonlocal *H*-convergence

Theorem (Nonlocal *H*-convergence)

If $\{\mathfrak{A}_{\delta,j}\}_{j=1}^{\infty} \subset \mathcal{H}$ is such that $\mathfrak{A}_{\delta,j} \stackrel{*}{\longrightarrow} \mathfrak{A}_{\delta}$ in the weak-* $L^{\infty}(\Omega_{\delta} \times \Omega_{\delta})$ topology, then $u_{\delta,j} \rightharpoonup u_{\delta}$ weakly in $X(\Omega_{\delta}; \mathbb{R}^{n})$, where $u_{\delta,j} := \mathcal{L}_{\delta,\mathfrak{A}_{\delta,j}}^{-1}g$ and $u_{\delta} := \mathcal{L}_{\delta,\mathfrak{A}_{\delta}}^{-1}g$. In addition, we have $\Psi_{\delta,\mathfrak{A}_{\delta,j}}u_{\delta,j} \rightharpoonup \Psi_{\delta,\mathfrak{A}_{\delta}}u_{\delta}$ weakly in $L^{2}(\Omega_{\delta} \times \Omega_{\delta})$.

- Prove $\lim_{j\to\infty} B_{\delta,\mathfrak{A}_{\delta,j}}(u_{\delta,j}, u_{\delta,j} u_{\delta}) = 0$ as a consequence of *G*-convergence
- Prove $\lim_{j\to\infty} B_{\delta,\mathfrak{A}_{\delta,j}}(u_{\delta}, u_{\delta,j} u_{\delta}) = 0$ by controlling $|\langle d_{k_{\delta}}\Psi_{\delta,\mathfrak{A}_{\delta,j}}u_{\delta,j}, u_{\delta,j} u_{\delta}\rangle|$ with Hölder and using Nonlocal Integration by Parts
- Conclude that $u_{\delta,j} \to u_{\delta}$ strongly in $X(\Omega_{\delta}; \mathbb{R}^n)$
- Finally, prove desired weak convergence directly

Cost Functional Setup

Cost functional

$$J(\mathfrak{A}, u) := \int_{\Omega} F(x, u(x)) dx + \iint_{\Omega \times \Omega} A(x, y, \mathfrak{A}(x, y)) dx dy$$

where $F : \Omega_{\delta} \times \mathbb{R}^n \to \mathbb{R}$ satisfies the following rudimentary conditions:

- $F(\cdot, v)$ is measurable for all $v \in \mathbb{R}^n$;
- **2** $F(x, \cdot)$ is lower semi-continuous for any fixed $x \in \Omega$.
- **(**) There exists a constant $c_1 > 0$ and a function $\ell_1 \in L^1(\Omega)$ for which

$$|F(x,v)| \le c_1 |v|^2 + \ell_1(x)$$

holds for all $x \in \Omega$ and $v \in \mathbb{R}^n$.

Cost Functional Setup (continued)

We also say that $A: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies these conditions:

- $A(\cdot, \cdot, w)$ is measurable for all $w \in \mathbb{R}$;
- **2** $A(x, y, \cdot)$ is weakly lower semi-continuous for any fixed $(x, y) \in \Omega \times \Omega$.
- **③** There exists another constant $c_2 > 0$ and a function $\ell_2 \in \ell^1(\Omega \times \Omega)$ for which

$$|A(x, y, w)| \le c_2 |w|^2 + \ell_2(x, y)$$

holds for all $(x, y) \in \Omega \times \Omega$ and $w \in \mathbb{R}$.

NOTE: One option is $\iint_{\Omega \times \Omega} A(x, y, \mathfrak{A}(x, y)) dx dy = \frac{\lambda}{2} \|\mathfrak{A}\|_{L^2(\Omega \times \Omega)}^2$

Non-local Optimal Design Problem Statement

Find $(\overline{\mathfrak{A}_{\delta}}, \overline{u_{\delta}}) \in \mathcal{H} \times X_0$ such that

$$J(\overline{\mathfrak{A}_{\delta}},\overline{u_{\delta}}) = \min_{\mathfrak{A}_{\delta}\in\mathcal{H},u_{\delta}\in\mathcal{X}_{0}} \left\{ \int_{\Omega} F(x,u_{\delta}(x))dx + \iint_{\Omega\times\Omega} A(x,y,\mathfrak{A}_{\delta}(x,y))dxdy \right\},$$

The minimization is over pairs $(\mathfrak{A}_{\delta}, u_{\delta}) \in \mathcal{H} \times X_0(\Omega_{\delta}; \mathbb{R}^n)$ that satisfy

$$B_{\delta,\mathfrak{A}_{\delta}}(u_{\delta},v) \;=\; \langle g,v
angle, ext{ for all } v \in X_{0}(\Omega_{\delta};\mathbb{R}^{n}),$$

Existence of nonlocal optimal designs

Theorem (Existence of Non-local Optimal Design)

Let $\delta > 0$ be fixed. There exists a pair $(\overline{\mathfrak{A}_{\delta}}, \overline{u_{\delta}})$ solving the non-local optimal design problem.

- Use direct method
- Use weak convergence of states to identify a limit [of minimizing sequence]
- \bullet Weak-* limit of minimizing sequence of controls belongs to ${\cal H}$
- Solutions need not be unique!

Compliance and Reduced Cost

We henceforth assume J is of a compliance form, i.e.

$$J(\mathfrak{A}_{\delta}, u_{\delta}) = \int_{\Omega} g(x) \cdot u_{\delta}(x) dx + \iint_{\Omega \times \Omega} A(x, y, \mathfrak{A}_{\delta}(x, y)) dx dy$$

Let $r_{\delta} : \mathcal{H} \to \mathbb{R}$ denote the reduced cost functional:

$$r_{\delta}(\mathfrak{A}_{\delta}) = \int_{\Omega} g(x) \cdot S^{\delta}(\mathfrak{A}_{\delta}) dx + \iint_{\Omega \times \Omega} A(x, y, \mathfrak{A}_{\delta}(x, y)) dx dy$$

Definition (Γ -convergence)

We say that the family of functionals $\{r_{\delta}\}_{\delta>0}$ **Γ-converges** to the functional r (written $r_{\delta} \xrightarrow{\Gamma_{*}} r$) with respect to the weak-* topology on $L^{\infty}(\Omega \times \Omega)$ if the following hold:

O The liminf property: If {𝔅_δ}_{δ>0} ⊂ ℋ is a sequence such that 𝔅_δ ^{*}→ 𝔅 in the weak-* topology on L[∞](Ω × Ω), then we have the lim-inf inequality

$$\operatorname{liminf}_{\delta\to 0^+} r_{\delta}(\mathfrak{A}_{\delta}) \geq r_0(\mathfrak{A}).$$

2 Recovery sequence property: If $\mathfrak{A} \in \mathcal{H}$, then there exists a recovery sequence $\{\mathfrak{A}_{\delta}\}_{\delta>0} \subset \mathcal{H}$ such that $\mathfrak{A}_{\delta} \xrightarrow{*} \mathfrak{A}$ in the weak-* topology on $L^{\infty}(\Omega \times \Omega)$ and

 $\operatorname{limsup}_{\delta \to 0^+} r_{\delta}(\mathfrak{A}_{\delta}) \leq r_0(\mathfrak{A}).$

Theorem (Γ -convergence of optimal designs)

We have that $r_{\delta} \stackrel{\Gamma}{\rightharpoonup} r_0$ with respect to the weak-* topology on $L^{\infty}(\Omega \times \Omega)$.

Corollary (Convergence of Minimizers for Optimal Design)

δ

Let $\{\mathfrak{A}_{\delta}\}_{\delta>0} \subset \mathcal{H}$ be such that $\overline{\mathfrak{A}_{\delta}} \in \operatorname{argmin}_{\mathfrak{A}_{\delta} \in \mathcal{H}} r_{\delta}(\mathfrak{A}_{\delta})$, and let $\overline{\mathfrak{A}_{0}} \in \mathcal{H}$ be such that $\overline{\mathfrak{A}_{0}} \in \operatorname{argmin}_{\mathfrak{A}_{0} \in \mathcal{H}} r_{0}(\mathfrak{A}_{0})$. Then we have the convergence

$$\lim_{\to 0^+} r_{\delta}(\overline{\mathfrak{A}_{\delta}}) = r_0(\overline{\mathfrak{A}}_0).$$

Local design problem

Find $(\overline{\mathfrak{A}}, \overline{u}) \in \mathcal{H} \times H^1_0(\Omega; \mathbb{R}^n)$ such that

$$J(\overline{\mathfrak{A}},\overline{u}) = \min_{\mathfrak{A}\in\mathcal{H}, u\in\mathcal{H}_{0}^{1}} \left\{ \int_{\Omega} g(x) \cdot u(x) dx + \iint_{\Omega\times\Omega} A(x,y,\mathfrak{A}(x,y)) dx dy \right\}$$

over pairs $(\mathfrak{A}, u) \in \mathcal{H} \times H^1_0$ that satisfy

$$B_{0,\mathfrak{A}}(u,w) = \int_{\Omega} g(x) \cdot w(x) dx \quad \forall w \in H_0^1$$

Theorem

There exists a solution $(\overline{\mathfrak{A}_0}, \overline{\mathfrak{u}_0})$ to the local optimal design problem.

Outline

Overarching Ideas

2 Notation

- Optimal Control: Analysis
- Optimal Control: Discretization
- Optimal Design: Analysis

Closing Remarks

- Well-posedness of control problem, existence of minimizers for design problem
- $\bullet\,$ Convergence of minimizers as $\delta\to 0^+$
- Finite element approximation of control problem
- Asymptotic compatibility for control problem

- Finish simulations for control problem
- Finite element approximation for design problem
- Asymptotic compatibility results for design problem

ArXiV version of control paper: https://arxiv.org/pdf/2304.09328.pdf