\qquad
Section \qquad

Name \qquad

This document contains an archive of practice problems I created for use in the University of Tennessee-Knoxville Spring 2020's iteration of MATH 125 basic calculus. They are listed in the same order as the lesson plan for the course.
(1) Evaluate the limit $\lim _{x \rightarrow 16} \sqrt[4]{x}$. If the limit does not exist, write DNE.
(2) The function $g(x)=\frac{x^{2}+6 x+8}{x+2}$ has a removable discontinuity at $x=-2$. What value should we redefine $g(-2)$ to be if we want g to be continuous?
(3) Evaluate the limit $\lim _{x \rightarrow 27} \sqrt[3]{x}$. If the limit does not exist, write DNE.
(4) The function $g(x)=\frac{x^{2}-6 x-16}{x-8}$ has a removable discontinuity at $x=8$. What value should we redefine $g(8)$ to be if we want g to be continuous?
(5) Evaluate the limit $\lim _{x \rightarrow 64} \sqrt[4]{x}$. If the limit does not exist, write DNE.
(6) The function $g(x)=\frac{x^{2}+5 x+6}{x+3}$ has a removable discontinuity at $x=-3$. What value should we redefine $g(-3)$ to be if we want g to be continuous?
(7) Evaluate the limit $\lim _{x \rightarrow 36} \sqrt{x}$. If the limit does not exist, write DNE.
(8) The function $g(x)=\frac{x^{2}+3 x-10}{x-2}$ has a removable discontinuity at $x=2$. What value should we redefine $g(2)$ to be if we want g to be continuous?
(9) Consider the function $f(x)=2 x^{2}-2$. Find the value of $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(10) Given your answer to Problem 1, identify all point(s) (the ordered pair(s)) where the tangent line to the graph of $f(x)$ is horizontal. If there are no such points, write "None."
(11) Consider the function $f(x)=2 x^{2}-2$. Find the value of $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(12) Given your answer to Problem 1, identify all point(s) (the ordered pair(s)) where the tangent line to the graph of $f(x)$ is horizontal. If there are no such points, write "None."
(13) Consider the function $f(x)=2 x^{2}+1$. Find the value of $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(14) Given your answer to Problem 1, identify all point(s) (the ordered pair(s)) where the tangent line to the graph of $f(x)$ is horizontal. If there are no such points, write "None."
(15) Consider the function $f(x)=5 x^{2}+4$. Find the value of $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(16) Given your answer to Problem 1, identify all point(s) (the ordered pair(s)) where the tangent line to the graph of $f(x)$ is horizontal. If there are no such points, write "None."

Using the definition of the derivative, find $f^{\prime}(x)$ when $f(x)=x+5$.
(17) Find the derivative of the function $f(x)=5 x^{2}+\frac{2}{3} x^{-3}$. Use correct notation.
(18) Find the derivative of the function $g(x)=(3 x)^{-2}$. Use correct notation. For this problem consider using algebra rules to rewrite the function first.
(19) Find the derivative of the function $f(x)=7 x^{2}+\frac{1}{3} x^{-3}$. Use correct notation.
(20) Find the derivative of the function $g(x)=(4 x)^{-3}$. Use correct notation. For this problem consider using algebra rules to rewrite the function first.
(21) Find the derivative of the function $f(x)=-2 x^{2}-\frac{1}{3} x^{-3}$. Use correct notation.
(22) Find the derivative of the function $g(x)=(3 x)^{-3}$. Use correct notation. For this problem consider using algebra rules to rewrite the function first.
(23) Find the derivative of the function $f(x)=-4 x^{2}+\frac{7}{3} x^{-3}$. Use correct notation.
(24) Find the derivative of the function $g(x)=(2 x)^{-4}$. Use correct notation. For this problem consider using algebra rules to rewrite the function first.
(25) Find the average rate of change (AROC) of the function $f(x)=2 x^{3}-5$ on the interval $[1,3]$.
(26) Find the instantaneous rate of change of the function $f(x)=2 x^{3}-5$ at the point $x=2$.
(27) Using complete sentence(s), explain the difference between average rate of change and instantaneous rate of change.
(28) Find the average rate of change (AROC) of the function $f(x)=4 x^{3}-3$ on the interval $[1,3]$.
(29) Find the instantaneous rate of change of the function $f(x)=4 x^{3}-3$ at the point $x=2$.
(30) Find the average rate of change (AROC) of the function $f(x)=2 x^{3}+1$ on the interval $[2,4]$.
(31) Find the instantaneous rate of change of the function $f(x)=2 x^{3}+1$ at the point $x=3$.
(32) Find the average rate of change (AROC) of the function $f(x)=5 x^{3}-6$ on the interval $[1,3]$.
(33) Find the instantaneous rate of change of the function $f(x)=5 x^{3}-6$ at the point $x=2$.
(34) Find the derivative of the function $f(x)=\frac{2 x}{(x+3)^{2}}$ using the Quotient Rule and Chain Rule. Use correct notation.
(35) Find the derivative of the function $f(x)=2 x(x+3)^{-2}$ using the Product Rule and Chain Rule. Use correct notation.
(36) Find the derivative of the function $f(x)=\frac{4 x}{(x+2)^{3}}$ using the Quotient Rule and Chain Rule. Use correct notation.
(37) Find the derivative of the function $f(x)=4 x(x+2)^{-3}$ using the Product Rule and Chain Rule. Use correct notation.
(38) Find the derivative of the function $f(x)=\frac{2 x}{(x-1)^{3}}$ using the Quotient Rule and Chain Rule. Use correct notation.
(39) Find the derivative of the function $f(x)=2 x(x-1)^{-3}$ using the Product Rule and Chain Rule. Use correct notation.
(40) Find the derivative of the function $f(x)=\frac{-2 x}{(x+1)^{3}}$ using the Quotient Rule and Chain Rule. Use correct notation.
(41) Find the derivative of the function $f(x)=-2 x(x+1)^{-3}$ using the Product Rule and Chain Rule. Use correct notation.
(42) If $f(x)=\frac{3 x}{\left(x^{2}+5 x+1\right)^{2}}$, find $f^{\prime}(x)$.
(43) Let $f(x)=x^{4}+2 x^{2}-1$. Find $f^{\prime \prime}(x)$.
(44) Suppose $f^{(5)}(x)=3 x^{2}+1$. Find $f^{(7)}(x)$.
(45) Let $f(x)=x^{3}-5 x^{2}-1$. Find $f^{\prime \prime}(x)$.
(46) Suppose $f^{(4)}(x)=5 x^{2}+22$. Find $f^{(6)}(x)$.
(47) Let $f(x)=2 x^{2} e^{x}$. Find $f^{\prime}(x)$.
(48) Suppose $g(x)=\ln \left(x^{5}\right)$. Find the slope of the tangent line of g when $x=2$.
(49) Let $f(x)=3 x^{3} e^{x}$. Find $f^{\prime}(x)$.
(50) Suppose $g(x)=\ln \left(x^{4}\right)$. Find the slope of the tangent line of g when $x=-3$.
(51) If $S(t)=\frac{2 t}{e^{t}+1}$ represents the position of a particle, find the velocity and acceleration functions. I suggest rewriting the function using algebra first.
(52) If $S(t)=\frac{2 e^{2 t}}{t}$ represents the position of a particle, find the velocity and acceleration functions. I suggest rewriting the function using algebra first.
(53) If $S(t)=\left(t^{2}+2 t+1\right)^{-1}$ represents the position of a particle, find the velocity and acceleration functions. I suggest rewriting the function using algebra first. Try to factor the polynomial!
(54) If $f(x)=\frac{x^{3}}{x^{3}+1}-12 x^{2}$, find $f^{\prime}(x)$.
(55) If $f(x)=\frac{x^{3}}{x^{2}+1}-6 x^{2}$, find $f^{\prime}(x)$.
(56) Let $g(x)=\frac{2 x^{4}+x^{3}}{x^{2}+2}$. Find values of x for which the tangent line of g is horizontal.
(57) Find the critical number(s) of $f(x)=\frac{x^{2}+5 x}{x-2}$. If there are none, say "None."
(58) Find all relative extrema of $f(x)=\frac{4}{3} x^{3}-4 x^{2}$. For this problem I expect to see you draw a table like the ones on page 64 of your Note-Taking Guide.
(59) Find the critical number(s) of $f(x)=\frac{x^{2}+2 x}{x-3}$. If there are none, say "None."
(60) Find all relative extrema of $f(x)=x^{3}-\frac{9}{2} x^{2}$. For this problem I expect to see you draw a table like the ones on page 64 of your Note-Taking Guide.
(61) Find the critical number(s) of $f(x)=\frac{x^{2}-x}{x+3}$. If there are none, say "None."
(62) Find all relative extrema of $f(x)=\frac{1}{3} x^{3}-3 x^{2}$. For this problem I expect to see you draw a table like the ones on page 64 of your Note-Taking Guide.
(63) Find the critical number(s) of $f(x)=\frac{x^{2}+x}{x-5}$. If there are none, say "None."
(64) Find all relative extrema of $f(x)=\frac{4}{3} x^{3}+4 x^{2}$. For this problem I expect to see you draw a table like the ones on page 64 of your Note-Taking Guide.
(65) Draw a continuous function that has no relative maximum and no relative minimum.
(66) Draw a continuous function with no absolute maximum and two relative minima.
(67) Draw a function on the closed interval $[0,1]$ with the absolute maximum at an endpoint and the absolute minimum at a critical number.
(68) The demand function for tickets for a flight from Knoxville to Miami is $p(x)=3600-12 x$. Find the price that will maximize revenue.
(69) Upon retirement you decide to move to a rural area with lots of open land to plant trees and vegetables. You want to enclose an area of 12,100 square feet with a fence that costs $\$ 15$ per foot to build. What is the smallest amount of fencing [perimeter] you need to accomplish this goal, and how much does it cost?
(70) The demand function for tickets for a flight from Knoxville to Denver is $p(x)=6000-6 x$. Find the price that will maximize revenue.
(71) Upon retirement you decide to move to a rural area with lots of open land to plant trees and vegetables. You want to enclose an area of 14,400 square feet with a fence that costs $\$ 7$ per foot to build. What is the smallest amount of fencing [perimeter] you need to accomplish this goal, and how much does it cost?
(72) The demand function for tickets for a flight from Knoxville to Austin is $p(x)=4500-9 x$. Find the price that will maximize revenue.
(73) Upon retirement you decide to move to a rural area with lots of open land to plant trees and vegetables. You want to enclose an area of 10,000 square feet with a fence that costs $\$ 12$ per foot to build. What is the smallest amount of fencing [perimeter] you need to accomplish this goal, and how much does it cost?
(74) The demand function for tickets for a flight from Knoxville to Charlotte is $p(x)=5600-8 x$. Find the price that will maximize revenue.
(75) Upon retirement you decide to move to a rural area with lots of open land to plant trees and vegetables. You want to enclose an area of 10,000 square feet with a fence that costs $\$ 11$ per foot to build. What is the smallest amount of fencing [perimeter] you need to accomplish this goal, and how much does it cost?
(76) Find this indefinite integral: $\int 12 x^{5}+8 x^{\frac{1}{2}} d x$. Don't forget to include a $+C$.
(77) Circle all indefinite integrals below that require u-substitution. You don't have to actually perform the u-substitutions.

$$
\begin{gathered}
\int-x^{5}\left(-\frac{1}{6} x^{6}+7\right)^{12} d x \\
\int\left(3 x^{4}+9\right)^{7} x^{3} d x \\
\int 3 x^{4}+9 d x \\
\int\left(3 x^{4}+9\right)^{7} d x
\end{gathered}
$$

(78) Find this indefinite integral: $\int 18 x^{5}+11 x^{\frac{1}{2}} d x$. Don't forget to include a $+C$.
(79) Circle all indefinite integrals below that require u-substitution. You don't have to actually perform the u-substitutions.

$$
\begin{gathered}
\int 3 x^{4}+9 d x \\
\int-x^{5}\left(-\frac{1}{6} x^{6}+7\right)^{12} d x \\
\int\left(3 x^{4}+9\right)^{7} d x \\
\int\left(3 x^{4}+9\right)^{7} x^{3} d x
\end{gathered}
$$

(80) Find this indefinite integral: $\int 8 x^{3}+4 x^{\frac{1}{2}} d x$. Don't forget to include a $+C$.
(81) Circle all indefinite integrals below that require u-substitution. You don't have to actually perform the u-substitutions.

$$
\begin{gathered}
\int\left(3 x^{4}+9\right)^{7} x^{3} d x \\
\int\left(3 x^{4}+9\right)^{7} d x \\
\int 3 x^{4}+9 d x \\
\int-x^{5}\left(-\frac{1}{6} x^{6}+7\right)^{12} d x
\end{gathered}
$$

(82) Find this indefinite integral: $\int 4 x^{3}+7 x^{\frac{1}{2}} d x$. Don't forget to include a $+C$.
(83) Circle all indefinite integrals below that require u-substitution. You don't have to actually perform the u-substitutions.

$$
\int\left(3 x^{4}+9\right)^{7} x^{3} d x
$$

$$
\begin{gathered}
\int 3 x^{4}+9 d x \\
\int\left(3 x^{4}+9\right)^{7} d x \\
\int-x^{5}\left(-\frac{1}{6} x^{6}+7\right)^{12} d x
\end{gathered}
$$

(84) Find the antiderivative $\int \frac{1}{5}\left(x^{4}+2 x^{2}\right)\left(4 x^{3}+4 x\right) d x$. Try to do this two ways: by expanding and using the power rule, AND by using u-substitution.
(85) Refer to the "Summary of Integration Rules" table we filled out together in class. When do you use the formulas with x in them (the left column), and when do you use the formulas with u in them (the right column)?
(86) Find the two points of intersection ("little a and little b ") for the functions $f(x)=x^{2}-x$ and $g(x)=9 x-16$. Describe, using complete sentences, why we need to find the values of a and b to find the area between the curves f and g (you don't actually have to find the area).
(87) Describe, using complete sentences, the difference between consumer surplus and producer surplus.
(88) Find the two points of intersection ("little a and little b ") for the functions $f(x)=x^{2}+5 x$ and $g(x)=14 x+22$. Describe, using complete sentences, why we need to find the values of a and b to find the area between the curves f and g (you don't actually have to find the area).

