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1. WHAT IS THIS?

For MATH 574: Finite Element Methods in Fall 2021 at the University of Tennessee, I was
asked to give a presentation on a topic that extended the course material to earn my course grade.
This document comprises the notes I prepared for that presentation.

2. INTRODUCTION

2.1. Quadratic Energies. This example will help motivate the significance of Γ-convergence.
Consider the quadratic functional

J(u) :=
1

2
A(u, u)− F (u) (2.1)

on a Hilbert Space H , withA a bounded, coercive bilinear form1 on H×H and F a linear form
on H . As is typical with a Ritz method2, let {HN}∞N=1 be a collection of subspaces of H so that

Date: November 12, 2021.
1With boundedness constant M and coercivity constant α
2of which Galerkin methods are a special case

1



2 JOSHUA M. SIKTAR

dim(HN ) = N for all N ∈ N+. With the assumptions on J , there will be a unique minimizer u of
J on H , and also a unique minimizer uN of J on HN for each N ∈ N+.

Also assume that these subspaces are dense in the limit. That is, assume⋃
N∈N+

HN = H. (2.2)

Then we will show two things:
Claim A: J(uN )→ J(u) as N →∞
Claim B: uN → u as N →∞
Due to (2.2), we can select (up to a sub-sequence of the sets in the union (2.2) that is not

relabeled) vN ∈ HN such that vN → u as N →∞. Then for each N we have that

J(u) ≤ J(uN ) ≤ J(vN ), (2.3)
so to complete the proof of Claim A it suffices to show that J(vN ) → J(u) by the Squeeze

Theorem. Clearly, F (vN )→ F (u). Moreover, boundedness and coercivity ofA give constants M
and α such that

α‖vN − u‖2H ≤ A(vN − u, vN − u) ≤ M‖vN − u‖2H (2.4)
Upon expandingA(vN −u, vN −u), and recalling the convergence properties we have, we may

send N → ∞ above, treating the bilinear form as a norm equivalent to ‖·‖H , and we obtain that
A(vN , vN )→ A(u, u), completing the proof of Claim A.

Now we prove Claim B, using Claim A. Furthermore, for any v ∈ H , our functional being
quadratic gives us

J(v)− J(u)− J ′(u)(v − u) =
1

2
A(v − u, v − u) ≥ α

2
‖v − u‖2H , (2.5)

and since J ′(u) = 0, upon replacing v := uN to get

J(uN )− J(u) ≥ α

2
‖uN − u‖2H . (2.6)

Finally, sending N →∞ and using Claim A gives us Claim B.

Remark 2.1. We only used the specific structure of our functional to prove Claim B.

2.2. The Lavrentiev Gap Phenomenon. The purpose of this example is to show that the conver-
gence of minimizers is not guaranteed by simply assuming that the approximation spaces are dense
in the full space. Other conditions are needed, and these will be revealed in due time. In any case
here are the details of the example.

Example 2.2 ([Bar] Example 4.1). Let our admissible class be X := W 1,1
0 (0, 1). Consider the

functional

I(u) :=

ˆ 1

0
(x− u(x)3)2|u′(x)|6dx. (2.7)
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For each h > 0, let Th be a triangulation (partition) of (0, 1) and define Xh := X ∩S 1(Th).
Then the function u(x) := x

1
3 is a minimizer for I in X , but for each h > 0, we have the gap

inequality

0 = min
u∈W 1,1

0 (0,1)
I(u) < min

u∈W 1,1
0 (0,1)∩W 1,∞(0,1)

I(u) ≤ min
uh∈Xh

I(uh). (2.8)

That is, even if we send h → 0+ above, only the last part of the inequality depends on h, so
these minima expressions cannot converge to 0! The strictness of the first inequality is crucial.

2.3. Key Definitions.

Definition 2.3 (Types of Convergence and Limiting Behavior). Let (X, ‖·‖X) be a Banach space,
I : X → R be a functional.

a. A sequence {xk}∞k=1 ⊂ X is said to weakly converge to an x ∈ X , if for each y ∈ X∗,
necessarily lim

k→∞
y(xk) = y(x). Denote this as xk ⇀ x.

b. A sequence {xk}∞k=1 ⊂ X is said to strongly converge to x ∈ X if ‖xk−x‖X→ 0 as k →∞
c. The functional I is said to be weakly lower semi-continuous if whenever xk ⇀ x, we have

I(x) ≤ liminfk→∞I(xk).
d. The functional I is said to be [strongly] lower semi-continuous if whenever xk → x, we have

I(x) ≤ liminfk→∞I(xk).
e. The functional I is said to be [strongly] continuous if whenever xk → x, we have I(x) =

lim
k→∞

I(xk).

f. The functional I is said to be coercive if whenever xk is a sequence with ‖xk‖→ ∞, neces-
sarily I(xk)→∞ as k →∞.

Definition 2.4 (Quasiconvexity, [Rin] Equation (5.2)). A locally bounded, Borel-measurable func-
tion h : Rm×d → R is quasiconvex if

h(A) ≤
 
B(0,1)

h(A+5ψ(z))dz (2.9)

for all A ∈ Rm×d and all ψ ∈W 1,∞
0 (B(0, 1);Rm).

Remark 2.5. The previous definition holds even for m = 1 and d = 1. Moreover, all convex
functions are automatically quasiconvex, and the notions of convex and quasiconvex are equivalent
for scalar-valued functions.

Definition 2.6 (Γ-convergence). Let X be a Banach space, I : X → R ∪ {+∞} and let {Ih}h>0

be a sequence of functionals Ih : X → R ∪ {+∞}. This sequence Γ-converges to I as h → 0,

denoted by Ih
Γ−→ I with respect to a topology (or norm) on X if the following conditions hold:

i) Liminf inequality: for every sequence {uh}h>0 ⊂ X with uh → u for a u ∈ X , then

I(u) ≤ liminfh→0+Ih(uh). (2.10)
ii) Recovery sequence: for every u ∈ X there exists a sequence {uh}h>0 ⊂ X with uh → u

and
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lim
h→0+

Ih(uh) = I(u). (2.11)

Remark 2.7. Condition ii) can be replaced by the following condition, which seems weaker but
coupled with i) is actually equivalent: for every u ∈ X there exists a sequence {uh}h>0 ⊂ X with
uh → u and

limsuph→0+Ih(uh) ≤ I(u). (2.12)

3. FACTS ABOUT Γ-CONVERGENCE

3.1. Assorted Facts. Here we present some basic facts about Γ-convergence.

Lemma 3.1 (Exercise in [Rin]). If a sequence of functionals {Ih}h>0 has a Γ-limit I , then that
limit is uniquely determined.

Proposition 3.2 (Proposition 13.2 [Rin]). If Ih : X → R ∪ {+∞} is a sequence of functionals
that Γ-converges to I : X → R ∪ {+∞}, then I is lower semi-continuous.

Corollary 3.3. Let X be a normed space3. If Ih : X → R ∪ {+∞} is a sequence of functionals
that Γ-converges to I : X → R ∪ {+∞} and I is a convex functional, then I is weakly lower
semi-continuous.

Proof. This follows from Proposition 3.2 and the fact that any functional that is convex and lower
semi-continuous is automatically weakly lower semi-continuous. �

3.2. Conforming Discretizations.

Definition 3.4 (Confirming Subspaces). We say that a sequence of subspaces {Xh}h>0 of X used
in a finite element approximation conform to X if

Ih(uh) = I(uh) (3.1)
for all uh ∈ Xh and all h > 0.

This type of discretization is introduced because it aids in a sufficient condition for Γ-convergence
of a discretization.

Theorem 3.5 (Theorem 4.1 in [Bar]). Let {Xh}h>0 be a family of conforming subspaces for the
Banach spaceX that are also dense [in the limit] inX with respect to the strong [normed] topology
of X . If I is weakly lower semi-continuous and strongly continuous, then Ih

Γ−→ I as h → 0 with
respect to weak convergence in X .

Proof. Choose a sequence {uh}h>0 ⊂ X and a u ∈ X for which uh ⇀ u as h → 0+. Since we
have a conforming discretization,

Ih(uh) ≥ I(uh) (3.2)

3to assure that we have a notion of strong convergence that is meaningful
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for all h > 0, so the weak lower semi-continuity of I gives us the lim-inf inequality, namely

liminfh→0+Ih(uh) ≥ liminfh→0+I(uh) ≥ I(u). (3.3)
Now we prove existence of a recovery sequence. For a given u ∈ X , pick {uh}h>0 such that

uh ∈ Xh for all h > 0 and uh → u inX . Then, since I is strongly continuous and Ih(uh) = I(uh)
for all h > 0, taking a limit yields

I(u) = lim
h→0+

Ih(uh). (3.4)

�

4. WHY DISCRETIZE?

The notion of Γ-convergence is one that can be proven without any introduction of finite ele-
ments, if one considers the exact form of Definition 2.6. However, it is often of interest in finite
element methods, and numerical analysis in general, to obtain convergence rates. That is, do there
exist C, β > 0 such that ∣∣∣∣ min

uh∈Xh

Ih(uh)−min
u∈X

I(u)

∣∣∣∣ ≤ Chβ? (4.1)

This example illustrates one problem where we are able to obtain a rate of convergence.

Example 4.1. Let X := H1
0 (Ω) and Xh := S 1

0 (Th) for a family of triangulations {Th}h>0 of Ω.
Let f ∈ L2(Ω) and g ∈ L2(ΓN ), and define the functional

I(u) :=
1

2

ˆ
Ω
|5u|2dx−

ˆ
Ω
fudx−

ˆ
ΓN

guds. (4.2)

Here ΓN is the Neumann boundary, which is the portion of the boundary on which a Neumann
boundary condition is prescribed.

Also define Ih : H1
0 (Ω) → R so that Ih ≡ I on S 1

0 (Th). The Dirichlet Energy refers to
the first term in the functional. Those are weakly lower semicontinuous and strongly continuous.
Meanwhile, the other terms are weakly continuous on H1

0 (Ω). Finally, the subspaces we chose are

dense in the limit towards H1
0 (Ω), so by Theorem 3.5, we have that Ih

Γ−→ I as h→ 0+.
Now we can consider convergence rates. Recall the abstract Ceá’s Lemma we proved in class:

when we have a coercive, bounded bi-linear form and a bounded linear form on a Hilbert space
H and uN represents the minimizer of our functional on a subspace HN ⊂ H of dimension N , we
have the quasi-best approximation property

‖u− uN‖H ≤
M

α
inf

vN∈HN

‖u− vN‖H , (4.3)

where M is the boundedness constant of the bilinear form, and α is the coercivity constant. For
our problem, this lemma takes the form

‖5(u− uh)‖L2(Ω) ≤ inf
vh∈S 1

D(Th)
‖5(u− vh)‖L2(Ω). (4.4)
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Then due to error interpolation on the affine function space, we obtain

‖5(u− uh)‖L2(Ω) ≤ ch2[u]H2(Ω). (4.5)

Now we estimate |I(u)− Ih(uh)| with the Triangle Inequality to obtain the terms that we want:

|I(u)− Ih(uh)| ≤ 1

2

∣∣∣∣ˆ
Ω
|5u|2−|5uh|2dx

∣∣∣∣+

∣∣∣∣ˆ
Ω
f(u− uh)dx

∣∣∣∣+

∣∣∣∣ˆ
ΓN

g(u− uh)dS

∣∣∣∣ . (4.6)

Owing to Cauchy-Schwarz, we then get

|I(u)−Ih(uh)| ≤ 1

2

∣∣∣∣ˆ
Ω
|5u|2−|5uh|2dx

∣∣∣∣+‖f‖L2(Ω)‖u−uh‖L2(Ω)+‖g‖L2(ΓN )‖u−uh‖L2(ΓN ).

(4.7)
Now, we can handle the ‖u− uh‖L2(ΓN ) term by means of the trace inequality:

|I(u)−Ih(uh)| ≤ 1

2

∣∣∣∣ˆ
Ω
|5u|2−|5uh|2dx

∣∣∣∣+‖f‖L2(Ω)‖u−uh‖L2(Ω)+Ctr‖g‖L2(ΓN )‖u−uh‖W 1,2(Ω).

(4.8)
Since we want factors of ‖5(u − uh)‖L2(Ω), we look to use the Poincaré Inequality on the

lower-order terms to condense them all as

|I(u)− Ih(uh)| ≤ 1

2

∣∣∣∣ˆ
Ω
|5u|2−|5uh|2dx

∣∣∣∣+ C‖5(u− uh)‖L2(Ω). (4.9)

Now, by means of treating the remaining integral as a difference of squares, we obtain the
inequality

|I(u)− Ih(uh)| ≤ 1

2
‖5u+5uh‖L2(Ω)‖5u−5uh‖L2(Ω)+C‖5(u− uh)‖L2(Ω). (4.10)

The factor ‖5u+5uh‖L2(Ω) is uniformly bounded as h→ 0+, so in essence this becomes

|I(u)− Ih(uh)| ≤ C‖5(u− uh)‖L2(Ω). (4.11)

Finally, we can use the standard error estimate ‖5u − 5uh‖L2(Ω)≤ ch[u]H2(Ω) to get the
desired estimate of4

|I(u)− Ih(uh)| ≤ Ch. (4.12)

4The constants change at each step!
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5. APPLICATION: HYPERELASTICITY

Example 5.1 (Hyperelasticity Problem). Let our admissible class beX := {y ∈W 1,2(Ω;Rd), y|ΓD
=

ỹ|ΓD
} where ỹD ∈ W 1,2(Ω;Rd) is Dirichlet boundary data. Assume that W : Rd×d → R is a

continuous and quasi-convex mapping with growth bounds

− c1 + c2|F |2 ≤ W (F ) ≤ c1 + c2|F |2. (5.1)
Let f ∈ L2(Ω;Rd) and g ∈ L2(ΓN ;Rd) be our data, and define our functional in terms of it:

I(u) :=

ˆ
Ω
W (5u)dx−

ˆ
Ω
f · udx−

ˆ
ΓN

g · udS (5.2)

We will show that this functional is weakly lower semi-continuous and coercive onW 1,2(Ω;Rd).
Theorem 2.2 of [Bar] says that quasi-convex functionals are automatically weakly lower semicon-
tinuous in W 1,p(Ω;Rd), and we will accept this without proof.

Suppose now that {uj}∞j=1 ⊂ W 1,2(Ω;Rd) is a sequence converging strongly to some u ∈
W 1,2(Ω;Rd). Then there is a sub-sequence {ujk}

∞
k=1 of {uj}∞j=1 such that 5ujk → 5u for a.e.

x ∈ Ω. Then for this sub-sequence we may use the Generalized Dominated Convergence Theorem
to conclude that

lim
k→∞

ˆ
Ω
W (5ujk(x))dx =

ˆ
Ω
W (5u(x))dx. (5.3)

With these convergence properties in mind, one can conclude that we have Γ-convergence with
an appropriate choice of limiting sub-spaces. If yD is piecewise affine boundary data, then the set
Xh := X ∩S 1(Th)d is nonempty, and the finite element spaces are dense 5.
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