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1. GOALS

The goal of this note is to discuss the development of optimality conditions for an optimal control
problem where the state equation (serving as a constraint) is the Fractional Laplacian. Here’s the
setup: we want to minimize the cost functional

min J(u, z) =
1

2
‖u− ud‖2L2(Ω)+

λ

2
‖u‖2L2(Ω),

subject to the state equation constraint{
(−4)su(x) = z(x), x ∈ Ω

u(x) = 0, x ∈ Rn \ Ω

Our parameters are as follows: s ∈ (0, 1), λ > 0, and ud ∈ L2(Ω) are given, and the set of
admissible controls is

Zad := {ξ ∈ L2(Ω), a ≤ ξ ≤ b a.e.}
Finally, we note that the Fractional Laplacian (−4)s is an operator of fractional type defined as

(−4)su(x) := C(n, s)

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy
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2. THE STATE EQUATION

To have any hope of studying optimality conditions or the optimal control problem as a whole,
we must first have well-posedness of the state equation.

Theorem 2.1. Our state equation, a Dirichlet BVP for the Fractional Laplacian, has a unique
solution, and there is a continuous dependence on the data (i.e., a stability estimate).

Let’s consider our function space. We define

X0 := H̃s(Ω) =

{
u ∈ L2(Ω),

ˆ
Rn

ˆ
Rn

|u(x)− u(y)|2

|x− y|n+2s
dydx <∞, u = 0 on Rn \ Ω

}
:=

{u ∈ L2(Ω), [u]
H̃s(Ω)

<∞, u = 0 on Rn \ Ω}
This space is Hilbert with the inner product

〈u, v〉
H̃s(Ω)

= 〈u, v〉L2(Ω) +

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dydx

and the norm

||u||
H̃s(Ω)

= ‖u‖L2(Ω)+

ˆ
Rn

ˆ
Rn

|u(x)− u(y)|2

|x− y|n+2s
dydx

That is, our state equation problem is posed on a Hilbert Space! Weak solutions of the Fractional
Laplace Equation will satisfy the following for all v ∈ H̃s(Ω) (see for instance [Ser]):

C(n, s)

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dydx =

ˆ
Rn

z(x)v(x)dx,

of course with the same zero boundary condition as before. Clearly the left-hand side is a bi-
linear form on H̃s(Ω)× H̃s(Ω) and the right-hand side is a linear form on L2(Ω) (where z is taken
as fixed data and v as a test function). In order to see that we are in a Lax-Milgram framework,
we need to check some other properties of the bi-linear form. First, notice we have boundedness
(continuity) through Cauchy-Schwarz:

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dydx ≤

(ˆ
Rn

ˆ
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2
(ˆ

Rn

ˆ
Rn

|v(x)− v(y)|2

|x− y|n+2s
dxdy

) 1
2

= [u]
H̃s(Ω)

[v]
H̃s(Ω)

The other thing to remark is that coercivity is immediate because of the equality

ˆ
Rn

ˆ
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy = [u]2Hs(Ω)

Therefore, by the Lax-Milgram Theorem (see for instance Corollary 5.8 in [Bre]), there is a
unique weak solution u ∈ H̃s(Ω) to the Fractional Laplace Equation for any given data z ∈ L2(Ω).

As for continuous dependence, set v := u in the weak formulation:
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C(n, s)

ˆ
Rn

ˆ
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy =

ˆ
Rn

z(x)u(x)dx

Use the Cauchy-Schwarz Inequality on the RHS to conclude there exists a constant C > 0
(different from above) such that

[u]2Hs(Ω) ≤ C‖z‖L2(Ω)‖u‖L2(Ω)

To proceed, we need the Fractional Poincaré Inequality

‖u‖L2(Ω)≤ C[u]Hs(Ω)

We use it on the greater side of our to-be stability estimate to get

[u]2Hs(Ω) ≤ C‖z‖L2(Ω)[u]Hs(Ω) ⇒
[u]Hs(Ω) ≤ C‖z‖L2(Ω),

which is certainly a stability estimate. We hence have well-posedness for our state equation.

3. REDUCED COST APPROACH

Henceforth let S : L2(Ω) → W s,2(Ω) be the control-to-state mapping. Then due to the well-
posedness of the state equation, solving the original optimal control problem is equivalent to solv-
ing the reduced problem

min

{
F (z) :=

1

2
‖Sz − ud‖2L2(Ω)+

λ

2
‖z‖2L2(Ω)

}
over z ∈ Zad, subject to the same constraint. Notice that our set Zad is non-empty, closed,

convex, and bounded. Since the solution mapping S is continuous, F is continuous; since S
is linear, F is convex. In fact, since λ > 0, F is strictly convex. With this mind we have a
unique minimizer for the reduced problem over our desired domain, and in turn we have a unique
minimizer for the original [constrained] optimal control problem. We have implicitly used the
following theorem and corollary to reach this conclusion.

Theorem 3.1 (Projection Theorem). Let (Z, ‖·‖) be a Hilbert Space,K ⊂ Z be closed and convex,
and let ξ ∈ Z. Then there exists a projection onto K (i.e. a z ∈ K) so that

‖ξ − z‖= inf
x∈K
‖ξ − x‖

Moreover, z can be characterized by the variational inequality

〈ξ − z, x− z〉 ≥ 0

for all x ∈ K.

Corollary 3.2 (Direct Method as Projection). LetF : Z → R be convex and lower semi-continuous
with K as before. Then ∃ξ ∈ K so F (ξ) ≤ F (x) for all x ∈ K. If F is strictly convex, then the
choice of ξ is unique.
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4. THE FORMAL LAGRANGIAN APPROACH

The calculations in this section are formal
We define the Lagrangian to be

L(u, z, p) = J(u, z)−
ˆ

Ω
p(−4s u− z)dx

As always, a stationary point will satisfy the conditions DuL = 0, DzL ≥ 0, and DpL = 0 in
the [linear] operator sense. From these we have the following relations:

〈DzL, z − hz〉 = 〈λz, z − hz〉+ 〈p, z − hz〉 ≥ 0⇒ 〈z −
(
− 1

λ

)
p, z − hz〉 ≥ 0

DuL = 0⇒ 〈u− ud, hu〉 − 〈4sp, hu〉 = 0

DpL = 0⇒ 〈−4s u− z, hp〉 = 0

In fact, the equalities tell us that necessary conditions for attaining a stationary point of the
Lagrangian are

−4s p = u− ud
−4s u = z

And, based on our projection characterization, z = PZad

(
− 1

λ
p

)
. For our particular choice of

set Zad, z = max
{
a,min

{
b,− 1

λ
p
}}

. One advantage of this particular choice of Zad is that the
projection formula is nice and easy to write concisely.

5. THE LAGRANGIAN APPROACH

We need to directly calculate criteria for which

〈DF (z), hz − z〉 ≥ 0

for all hz ∈ Zad. To do this, we set up a difference quotient:

F (z+th)−F (z) =
1

2
‖S(z+t(h−z))−ud‖2L2(Ω)−

1

2
‖Sz−ud‖2L2(Ω)+

λ

2
‖z+th‖2L2(Ω)−

λ

2
‖z‖2L2(Ω)=

t

2
〈S(h− z), zSz − ud〉+

t2

2
‖S(h− z)‖2L2(Ω)+

λ

2
‖z + th‖2L2(Ω)−

λ

2
‖z‖2L2(Ω)=

t〈S∗(Sz − ud), h− z〉+O(t2) +
λ

2
‖z + th‖2L2(Ω)−

λ

2
‖z‖2L2(Ω)

These quantities are all non-negative so long as z refers to a solution of the optimal control
problem.

To actually obtain a derivative, we have to divide across by t and then send t → 0+. The latter
two terms simply become λ〈z, h〉 owing, for instance, to the example presented in Section 2.6 of
[Trö]. As a result, we can combine the two terms and get the inequality
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〈S∗(Sz − ud) + λz, hz − z〉 ≥ 0

In fact, the converse holds: that is, if the above inequality holds for all hz ∈ Zad, then z is a
solution to the optimal control. The convexity of the cost functional is crucial for this realization.

Remark 5.1. The development of the variational inequality follows the statements and proofs of
Lemma 2.21 and Theorem 2.22 in [Trö].

Now, provided that S ∈ B(L2(Ω)), p = S∗(Sz − ud) ∈ L2(Ω), then it follows that〈
z −

(
− 1

λ
p

)
, z − hz

〉
≥ 0

for all z ∈ Zad.
Thus by reduction, the task that remains is to characterize the adjoint. Let u := Sz ∈ H1

0 (Ω),
then we want 〈Sz, p〉 = 〈z, S∗ϕ〉 ∀z ∈ L2(Ω), and 〈Sz, p〉 = 〈u, ϕ〉, where ϕ = u− ud.

Now we claim that p = S∗(Sz − ud) for all z ∈ Zad (where u was chosen to correspond to an
arbitrary z via S). To see this, notice that since u = Sz, we have that for all w ∈ Hs

0(Ω),

〈z, w〉 = 〈u,w〉 ⇒
ˆ

Ω
zwdx = C(n, s)

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(w(x)− w(y))

|x− y|n+2s
dxdy

so now, we set z := u− ud and w := p, and we obtain
ˆ

Ω
p(u− ud)dx = C(n, s)

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(p(x)− p(y))

|x− y|n+2s
dxdy ⇒

ˆ
Ω
p(Sz − ud)dx = C(n, s)

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(p(x)− p(y))

|x− y|n+2s
dxdy ⇒

Since p satisfies the adjoint state equationC(n, s)

ˆ
Rn

ˆ
Rn

(v(x)− v(y))(p(x)− p(y))

|x− y|n+2s
dxdy =ˆ

Ω
(u − ud)vdx over v ∈ Hs(Ω) by definition of the adjoint state equation (setting v := u)1, we

have

〈ϕ, Sz〉 = 〈Sz, p〉 ⇒
〈S∗ϕ, z〉 = 〈p, Sz〉

for all z ∈ L2(Ω), and so p = S∗ϕ (as they agree in the weak sense). In summary, the optimality
conditions are the following: for u ∈ Hs

0(Ω), the following hold for all v, w ∈ Hs
0(Ω):

C(n, s)

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy =

ˆ
Ω
zvdx

C(n, s)

ˆ
Rn

ˆ
Rn

(w(x)− w(y))(p(x)− p(y))

|x− y|n+2s
dxdy =

ˆ
Ω

(u− ud)wdx

1also see Definition 3.4 in [D’Elia]
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