OPTIMALITY CONDITIONS FOR FRACTIONAL LAPLACIAN

JOSHUA M. SIKTAR

CONTENTS

1.	Goals	1
2.	The State Equation	2
3.	Reduced Cost Approach	3
4.	The Formal Lagrangian Approach	4
5.	The Lagrangian Approach	4
References		6

1. GOALS

The goal of this note is to discuss the development of optimality conditions for an optimal control problem where the state equation (serving as a constraint) is the Fractional Laplacian. Here's the setup: we want to minimize the cost functional

$$\min J(u,z) = \frac{1}{2} \|u - u_d\|_{L^2(\Omega)}^2 + \frac{\lambda}{2} \|u\|_{L^2(\Omega)}^2,$$

subject to the state equation constraint

$$\begin{cases} (-\triangle)^s u(x) = z(x), \ x \in \Omega\\ u(x) = 0, \qquad x \in \mathbb{R}^n \setminus \Omega \end{cases}$$

Our parameters are as follows: $s \in (0,1), \lambda > 0$, and $u_d \in L^2(\Omega)$ are given, and the set of admissible controls is

$$Z_{\mathrm{ad}} := \{ \xi \in L^2(\Omega), a \le \xi \le b \text{ a.e.} \}$$

Finally, we note that the Fractional Laplacian $(-\triangle)^s$ is an operator of fractional type defined as

$$(-\triangle)^s u(x) := C(n,s) \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy$$

Date: December 28, 2021.

JOSHUA M. SIKTAR

2. The State Equation

To have any hope of studying optimality conditions or the optimal control problem as a whole, we must first have well-posedness of the state equation.

Theorem 2.1. Our state equation, a Dirichlet BVP for the Fractional Laplacian, has a unique solution, and there is a continuous dependence on the data (i.e., a stability estimate).

Let's consider our function space. We define

$$\begin{aligned} X_0 &:= \widetilde{H}^s(\Omega) = \left\{ u \in L^2(\Omega), \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} dy dx < \infty, u = 0 \text{ on } \mathbb{R}^n \setminus \Omega \right\} := \\ \left\{ u \in L^2(\Omega), [u]_{\widetilde{H}^s(\Omega)} < \infty, u = 0 \text{ on } \mathbb{R}^n \setminus \Omega \right\} \end{aligned}$$

This space is Hilbert with the inner product

$$\langle u, v \rangle_{\widetilde{H}^{s}(\Omega)} = \langle u, v \rangle_{L^{2}(\Omega)} + \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n + 2s}} dy dx$$

and the norm

$$||u||_{\widetilde{H}^{s}(\Omega)} = ||u||_{L^{2}(\Omega)} + \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x) - u(y)|^{2}}{|x - y|^{n + 2s}} dy dx$$

That is, our state equation problem is posed on a Hilbert Space! Weak solutions of the Fractional Laplace Equation will satisfy the following for all $v \in \tilde{H}^s(\Omega)$ (see for instance [Ser]):

$$C(n,s) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n + 2s}} dy dx = \int_{\mathbb{R}^n} z(x)v(x) dx,$$

of course with the same zero boundary condition as before. Clearly the left-hand side is a bilinear form on $\widetilde{H}^s(\Omega) \times \widetilde{H}^s(\Omega)$ and the right-hand side is a linear form on $L^2(\Omega)$ (where z is taken as fixed data and v as a test function). In order to see that we are in a Lax-Milgram framework, we need to check some other properties of the bi-linear form. First, notice we have boundedness (continuity) through Cauchy-Schwarz:

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n + 2s}} dy dx \le \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} dx dy \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|v(x) - v(y)|^2}{|x - y|^{n + 2s}} dx dy \right)^{\frac{1}{2}} dx dy$$

The other thing to remark is that coercivity is immediate because of the equality

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} dx dy = [u]_{H^s(\Omega)}^2$$

Therefore, by the Lax-Milgram Theorem (see for instance Corollary 5.8 in [Bre]), there is a unique weak solution $u \in \widetilde{H}^{s}(\Omega)$ to the Fractional Laplace Equation for any given data $z \in L^{2}(\Omega)$.

As for continuous dependence, set v := u in the weak formulation:

$$C(n,s) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} dx dy = \int_{\mathbb{R}^n} z(x)u(x) dx$$

Use the Cauchy-Schwarz Inequality on the RHS to conclude there exists a constant C > 0(different from above) such that

$$[u]_{H^{s}(\Omega)}^{2} \leq C \|z\|_{L^{2}(\Omega)} \|u\|_{L^{2}(\Omega)}$$

To proceed, we need the Fractional Poincaré Inequality

$$\|u\|_{L^2(\Omega)} \le C[u]_{H^s(\Omega)}$$

We use it on the greater side of our to-be stability estimate to get

$$\begin{aligned} \left[u\right]_{H^{s}(\Omega)}^{2} &\leq C \|z\|_{L^{2}(\Omega)} [u]_{H^{s}(\Omega)} \Rightarrow \\ \left[u\right]_{H^{s}(\Omega)} &\leq C \|z\|_{L^{2}(\Omega)}, \end{aligned}$$

which is certainly a stability estimate. We hence have well-posedness for our state equation.

3. REDUCED COST APPROACH

Henceforth let $S : L^2(\Omega) \to W^{s,2}(\Omega)$ be the control-to-state mapping. Then due to the wellposedness of the state equation, solving the original optimal control problem is equivalent to solving the **reduced problem**

$$\min\left\{F(z) := \frac{1}{2} \|Sz - u_d\|_{L^2(\Omega)}^2 + \frac{\lambda}{2} \|z\|_{L^2(\Omega)}^2\right\}$$

over $z \in Z_{ad}$, subject to the same constraint. Notice that our set Z_{ad} is non-empty, closed, convex, and bounded. Since the solution mapping S is continuous, F is continuous; since S is linear, F is convex. In fact, since $\lambda > 0$, F is strictly convex. With this mind we have a unique minimizer for the reduced problem over our desired domain, and in turn we have a unique minimizer for the original [constrained] optimal control problem. We have implicitly used the following theorem and corollary to reach this conclusion.

Theorem 3.1 (Projection Theorem). Let $(Z, \|\cdot\|)$ be a Hilbert Space, $K \subset Z$ be closed and convex, and let $\xi \in Z$. Then there exists a projection onto K (i.e. $a \ z \in K$) so that

$$\|\xi - z\| = \inf_{x \in K} \|\xi - x\|$$

Moreover, z can be characterized by the variational inequality

$$\langle \xi - z, x - z \rangle \ge 0$$

for all $x \in K$.

Corollary 3.2 (Direct Method as Projection). Let $F : Z \to \mathbb{R}$ be convex and lower semi-continuous with K as before. Then $\exists \xi \in K$ so $F(\xi) \leq F(x)$ for all $x \in K$. If F is strictly convex, then the choice of ξ is unique.

JOSHUA M. SIKTAR

4. THE FORMAL LAGRANGIAN APPROACH

The calculations in this section are formal

We define the Lagrangian to be

$$L(u, z, p) = J(u, z) - \int_{\Omega} p(-\Delta^s u - z) dx$$

As always, a stationary point will satisfy the conditions $D_u L = 0$, $D_z L \ge 0$, and $D_p L = 0$ in the [linear] operator sense. From these we have the following relations:

$$\langle D_z L, z - h_z \rangle = \langle \lambda z, z - h_z \rangle + \langle p, z - h_z \rangle \ge 0 \Rightarrow \langle z - \left(-\frac{1}{\lambda} \right) p, z - h_z \rangle \ge 0$$

$$D_u L = 0 \Rightarrow \langle u - u_d, h_u \rangle - \langle \triangle^s p, h_u \rangle = 0$$

$$D_p L = 0 \Rightarrow \langle - \triangle^s u - z, h_p \rangle = 0$$

In fact, the equalities tell us that necessary conditions for attaining a stationary point of the Lagrangian are

$$-\bigtriangleup^{s} p = u - u_d$$
$$-\bigtriangleup^{s} u = z$$

And, based on our projection characterization, $z = \mathbb{P}_{Z_{ad}}\left(-\frac{1}{\lambda}p\right)$. For our particular choice of set Z_{ad} , $z = \max\left\{a, \min\left\{b, -\frac{1}{\lambda}p\right\}\right\}$. One advantage of this particular choice of Z_{ad} is that the projection formula is nice and easy to write concisely.

5. THE LAGRANGIAN APPROACH

We need to directly calculate criteria for which

$$\langle DF(z), h_z - z \rangle \ge 0$$

for all $h_z \in Z_{ad}$. To do this, we set up a difference quotient:

$$\begin{split} F(z+th) - F(z) &= \frac{1}{2} \|S(z+t(h-z)) - u_d\|_{L^2(\Omega)}^2 - \frac{1}{2} \|Sz - u_d\|_{L^2(\Omega)}^2 + \frac{\lambda}{2} \|z+th\|_{L^2(\Omega)}^2 - \frac{\lambda}{2} \|z\|_{L^2(\Omega)}^2 = \\ & \frac{t}{2} \langle S(h-z), zSz - u_d \rangle + \frac{t^2}{2} \|S(h-z)\|_{L^2(\Omega)}^2 + \frac{\lambda}{2} \|z+th\|_{L^2(\Omega)}^2 - \frac{\lambda}{2} \|z\|_{L^2(\Omega)}^2 = \\ & t \langle S^*(Sz - u_d), h-z \rangle + O(t^2) + \frac{\lambda}{2} \|z+th\|_{L^2(\Omega)}^2 - \frac{\lambda}{2} \|z\|_{L^2(\Omega)}^2 \end{split}$$

These quantities are all non-negative so long as z refers to a solution of the optimal control problem.

To actually obtain a derivative, we have to divide across by t and then send $t \to 0^+$. The latter two terms simply become $\lambda \langle z, h \rangle$ owing, for instance, to the example presented in Section 2.6 of [Trö]. As a result, we can combine the two terms and get the inequality

$$\langle S^*(Sz - u_d) + \lambda z, h_z - z \rangle \ge 0$$

In fact, the converse holds: that is, if the above inequality holds for all $h_z \in Z_{ad}$, then z is a solution to the optimal control. The convexity of the cost functional is crucial for this realization.

Remark 5.1. The development of the variational inequality follows the statements and proofs of Lemma 2.21 and Theorem 2.22 in [Trö].

Now, provided that $S \in B(L^2(\Omega))$, $p = S^*(Sz - u_d) \in L^2(\Omega)$, then it follows that

$$\left\langle z - \left(-\frac{1}{\lambda}p\right), z - h_z\right\rangle \ge 0$$

for all $z \in Z_{ad}$.

have

Thus by reduction, the task that remains is to characterize the adjoint. Let $u := Sz \in H_0^1(\Omega)$, then we want $\langle Sz, p \rangle = \langle z, S^*\varphi \rangle \ \forall z \in L^2(\Omega)$, and $\langle Sz, p \rangle = \langle u, \varphi \rangle$, where $\varphi = u - u_d$.

Now we claim that $p = S^*(Sz - u_d)$ for all $z \in Z_{ad}$ (where u was chosen to correspond to an arbitrary z via S). To see this, notice that since u = Sz, we have that for all $w \in H_0^s(\Omega)$,

$$\langle z, w \rangle = \langle u, w \rangle \Rightarrow \int_{\Omega} zw dx = C(n, s) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(u(x) - u(y))(w(x) - w(y))}{|x - y|^{n + 2s}} dx dy$$

so now, we set $z := u - u_d$ and w := p, and we obtain

$$\int_{\Omega} p(u-u_d) dx = C(n,s) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(u(x) - u(y))(p(x) - p(y))}{|x-y|^{n+2s}} dx dy \Rightarrow$$

$$\int_{\Omega} p(Sz - u_d) dx = C(n,s) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(u(x) - u(y))(p(x) - p(y))}{|x-y|^{n+2s}} dx dy \Rightarrow$$

Since p satisfies the adjoint state equation $C(n,s) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(v(x) - v(y))(p(x) - p(y))}{|x - y|^{n+2s}} dx dy = \int_{\Omega} (u - u_d) v dx$ over $v \in H^s(\Omega)$ by definition of the adjoint state equation (setting v := u)¹, we

$$\langle \varphi, Sz \rangle = \langle Sz, p \rangle \Rightarrow \langle S^* \varphi, z \rangle = \langle p, Sz \rangle$$

for all $z \in L^2(\Omega)$, and so $p = S^* \varphi$ (as they agree in the weak sense). In summary, the optimality conditions are the following: for $u \in H_0^s(\Omega)$, the following hold for all $v, w \in H_0^s(\Omega)$:

$$C(n,s) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n + 2s}} dx dy = \int_{\Omega} zv dx$$

$$C(n,s) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(w(x) - w(y))(p(x) - p(y))}{|x - y|^{n + 2s}} dx dy = \int_{\Omega} (u - u_d) w dx$$

¹also see Definition 3.4 in [D'Elia]

JOSHUA M. SIKTAR

References

[Bre] H. Brezis, Functional Analysis, Sobolev Spaces, and Partial Differential Equations, Springer, 2011.

- [D'Elia] M. D'Elia, C. Glusa, E. Otárola, A priori error estimates for the optimal control of the integral fractional laplacian, SIAM J. Control Optim., 57(4) (2019), 2775–2798.
- [Di] E. Di Nezza, G. Palatucci and E. Valdinoci (2012). *Hitchhiker's guide to the fractional Sobolev spaces*. Bull. Sci. math., Vol. 136, No. 5, 521–573.
- [Ser] R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional laplace equation, *Publ. Mat.* 58 (2014), 133–154.
- [Trö] F. Tröltzsch, *Optimal Control of Partial Differential Equations: Theory, Methods, and Applications*, American Mathematical Society, 2010.