An Optimal Control Problem in Peridynamics

Joshua M. Siktar University of Tennessee-Knoxville Oral Specialty Examination

November 19, 2021 jsiktar@vols.utk.edu

Outline

- Introduction and motivation
- Properties of our function spaces
- Existence and uniqueness for state equation
- Solving the minimization problem
- **5** Convergence of state equation as $\delta \rightarrow 0^+$
- 6 Moving forward
- References

Outline

- Introduction and motivation
- Properties of our function spaces
- Existence and uniqueness for state equation
- Solving the minimization problem
- **5** Convergence of state equation as $\delta \to 0^+$
- 6 Moving forward
- References

Nonlocal equations [or systems] often take the form

$$\begin{cases} Lu = f, x \in \Omega \\ u = 0, x \in \Omega_{\delta} \setminus \Omega \end{cases}$$

For our problem the nonlocal operator is

$$Lu(x) = \frac{1}{2} \int_{\Omega_{\delta}} H(x, y) \frac{k_{\delta}(x - y)}{|x - y|^2} Du(x, y) dy$$

Common in solid state mechanics, including peridynamics

Motivation and Origins (continued)

Definition (PD)

Peridynamics (PD) is a nonlocal model for elasticity of solids that uses integrals over derivatives, attributed to Stewart A. Silling

Features:

- Exchanges derivatives in continuum models for integrals (helps address crack formation)
- Treats particles as having a bond between them
- Range of interaction parameterized by δ , called **horizon**
- Material parameters represented by h(x) (e.g., density)

Find $(\bar{u}, \bar{g}) \in (u_0 + X_0) \times L^2$ such that

$$I_{\delta}(\bar{u},\bar{g}) = \min_{g \in L^{2}(\Omega;\mathbb{R}^{n}), u \in u_{0} + X_{0}(\Omega;\mathbb{R}^{n})} \int_{\Omega} F(x,u(x)) dx + \frac{\lambda}{2} \|g\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2}$$

and u and g satisfy

$$B_h(u, w) = \int_{\Omega} g(x) \cdot w(x), \ w \in X_0.$$

Here \bar{g} is a external force and \bar{u} represents displacement

Candidate integrand

Goals

- Prove that solutions to the constraint equation exist and are unique
- Identify conditions on F where minimizers exist and are unique
- Consider behavior as $\delta \to 0^+$

Outline

- Introduction and motivation
- Properties of our function spaces
- Existence and uniqueness for state equation
- Solving the minimization problem
- **5** Convergence of state equation as $\delta \to 0^+$
- Moving forward
- References

- Let $\Omega \subset \mathbb{R}^n$ be a bounded domain
- Projected difference: $Du(x, y) := \frac{(u(x) u(y)) \cdot (x y)}{|x y|}$, nonlocal linearized strain (for vector-valued functions)
- Kernel sequence $\{k_{\delta}\}_{{\delta}>0}$ radial, integrable, non-negative, supported in $B(0,\delta)$, $k_{\delta}(r)r^{-2}$ is nonincreasing

Properties of Kernel

The following also hold for all $\delta > 0$:

$$\int_{\mathbb{R}^n} k_{\delta}(\xi) d\xi = 1$$

$$\lim_{\delta \to 0^+} \int_{\mathbb{R}^n} k_{\delta}(\xi) d\xi = \delta_0$$

$$\lim_{\epsilon \to \infty} \int_{\mathbb{R}^n \setminus B(0,\epsilon)} k_{\delta}(\xi) d\xi = 0$$

Problem Statement (local part)

Local objective functional:

$$I_0(g,u) = \int_{\Omega} F(x,u(x))dx + \frac{\lambda}{2} \|g\|_{L^2(\Omega;\mathbb{R}^n)}^2$$

Constraint: $u \in W^{1,2}(\Omega; \mathbb{R}^n)$ satisfying

$$\begin{cases} b_h(u,w) = \int_{\Omega} g(x) \cdot w(x) dx, \ w \in W_0^{1,2}(\Omega;\mathbb{R}^n) \\ u = u_0 \text{ in } \partial\Omega \end{cases}$$

Local inner product:

$$b_h(u,v) := C(n) \int_{\Omega} h(x) (2\langle \operatorname{\mathsf{Sym}}(\bigtriangledown u), \operatorname{\mathsf{Sym}}(\bigtriangledown v) \rangle_F + \operatorname{\mathsf{div}}(u) \operatorname{\mathsf{div}}(v)) dx,$$

with $C(n) = \frac{1}{(n+2)(n+4)}$; admissible class of pairs for the local problem:

$$\mathcal{A}^{\text{loc}} := \{ (v, f) \in W^{1,2}(\Omega; \mathbb{R}^n) \times L^2(\Omega; \mathbb{R}^n),$$

$$v \text{ solves local BVP for any } w \in W^{1,2}_0(\Omega; \mathbb{R}^n) \}$$

Design Function

Our design function is

$$H(x,y) := \frac{h(x) + h(y)}{2},$$

where there exist h_{\min} , $h_{\max} > 0$ so $h_{\min} \le h \le h_{\max}$ on Ω .

Symmetry of k_{δ} allows us to use this representation

For fixed
$$\delta > 0$$
:

$$B(u,v) := \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} k_{\delta}(x-y) \frac{Du(x,y)Dv(x,y)}{|x-y|^2} dxdy$$

$$B_{h}(u,v) := \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} H(x,y)k_{\delta}(x-y) \frac{Du(x,y)Dv(x,y)}{|x-y|^2} dxdy$$

Function Spaces

Our function space is based on the forms B and B_h :

$$X(\Omega_{\delta}; \mathbb{R}^{n}) := \{ u \in L^{2}(\Omega_{\delta}; \mathbb{R}^{n}), B(u, u) < \infty \}$$
$$\partial X := \{ w|_{\Omega_{\delta} \setminus \Omega}, w \in X \}$$

$$X_0(\Omega_\delta; \mathbb{R}^n) := \{u \in X, u = 0 \text{ in } \Omega_\delta \setminus \Omega\}$$

For $u_0 \in \partial X$, we define the translation

$$u_0 + X_0 = \{ v \in X, v |_{\Omega_\delta \setminus \Omega} = u_0 \}$$

Hilbert Space

Lemma

The space $X(\Omega; \mathbb{R}^n)$ equipped with the norm

$$||u||_{X(\Omega;\mathbb{R}^n)} := ||u||_{L^2(\Omega;\mathbb{R}^n)} + [u]_{X(\Omega;\mathbb{R}^n)}$$

is a Hilbert Space, and so ix X_0 ; here $[u]_{X(\Omega;\mathbb{R}^n)} = B(u,u)^{\frac{1}{2}}$

Hilbert Space (continued)

For completeness, let $\{u_k\}_{k=1}^{\infty} \subset X(\Omega; \mathbb{R}^n)$ be Cauchy. Then $L^2(\Omega; \mathbb{R}^n)$ gives a candidate limit u. On a sub-sequence,

$$\lim_{m \to \infty} k_{\delta}(x - y) \frac{|Du_{k_m}(x, y)|^2}{|x - y|^2} = k_{\delta}(x - y) \frac{|Du(x, y)|^2}{|x - y|^2}$$

Then by Fatou's Lemma,

$$[u]_{X(\Omega;\mathbb{R}^n)} \leq \mathsf{liminf}_{k \to \infty} [u_k]_{X(\Omega;\mathbb{R}^n)} < \infty$$

Finally want $\lim_{k\to\infty} [u_k-u]_{X(\Omega;\mathbb{R}^n)}=0$. Use that $\{u_k\}_{k=1}^\infty$ is Cauchy to see that for $i \in \mathbb{N}^+$ sufficiently large,

$$[u_k - u_j]_{X(\Omega;\mathbb{R}^n)} < \epsilon.$$

Then use Fatou's Lemma over *j* once more to conclude completeness.

Also, $B_h(\cdot,\cdot)$ is an inner product only on X_0

Extension Lemma on X_0

Lemma (Extension Lemma)

If $u \in X_0(\Omega_\delta; \mathbb{R}^n)$ and \widetilde{u} is the zero extension to \mathbb{R}^n then there exists a constant $C = C(\delta) > 0$ such that

$$[\widetilde{u}]_{X(B;\mathbb{R}^n)} \leq C \|u\|_{X(\Omega_{\delta};\mathbb{R}^n)}.$$

whenever B is an open set containing Ω_{δ} ; in particular, the constant is independent of B, and we may select $B := \mathbb{R}^n$.

The restriction to X_0 (instead of X) is crucial!

Poincaré Inequality

Theorem (Poincaré)

(Mengesha-Du 2014) There exists a $\delta_0 > 0$ and a constant $C(\delta_0) > 0$ such that for all $\delta \in (0, \delta_0]$ and $u \in L^2(\Omega_{\delta}; \mathbb{R}^n)$ vanishing on $\Omega_{\delta} \setminus \Omega$,

$$||u||_{L^2(\Omega;\mathbb{R}^n)}^2 \leq C(\delta_0) \int_{\Omega} \int_{\Omega} \frac{k_{\delta}(x-y)|Du(x,y)|^2}{|x-y|^2} dxdy.$$

The assumption of $k_{\delta}(r)r^{-2}$ being nonincreasing is needed here

Outline

- Introduction and motivation
- Properties of our function spaces
- 3 Existence and uniqueness for state equation
- Solving the minimization problem
- **5** Convergence of state equation as $\delta \to 0^+$
- Moving forward
- References

Theorem (Existence and Uniqueness)

For any $u_0 \in \partial X$ and $g \in L^2(\Omega; \mathbb{R}^n)$, there exists a unique $u \in u_0 + X_0$ such that the state system is satisfied for all $w \in X_0$. Furthermore, we have the stability estimate

$$||u||_X \leq C(||\widetilde{u}||_X + ||g||_{X_*})$$

for some C>0 independent of δ , where \widetilde{u} is an extension of u_0 to all of Ω_{δ} .

- Start with $u_0 = 0$
- Invoke Riesz Representation Theorem
- Prove stability estimate

The solution here is a variational solution!

Suppose $u_0 = 0$. Notice that X_0 (and X) is Hilbert with the norm

$$||u||_{H}^{2} := ||u||_{L^{2}(\Omega;\mathbb{R}^{n})}^{2} + B_{h}(u,u)$$

and this norm is equivalent to $\|\cdot\|_X$. By nonlocal Poincaré,

$$c||u||_{H}^{2} \leq B_{h}(u,u) \leq ||u||_{H}^{2}.$$

Since $B_h(\cdot,\cdot)$ is an inner product on (X_0,B_h) , we may use Riesz to uniquely find u satisfying

$$B_h(u, w) = \int_{\Omega} w(x) \cdot g(x), \ \forall w \in X_0$$

for each $g \in X_0^*$.

If \widetilde{u} extends u_0 from Ω to Ω_{δ} then we find $v \in X_0$ uniquely determined by \widetilde{u} such that

$$B_h(v, w) = \int_{\Omega} g(x) \cdot w(x) dx - B_h(\widetilde{u}, w)$$

Then prove two different extensions give same solution

Stability

Since $u - \widetilde{u} \in X_0$, we have

$$B_h(u, u - \widetilde{u}) = \int_{\Omega} g(u - \widetilde{u}) dx$$

Finish after recalling $\|\cdot\|_H$ and $\|\cdot\|_X$ are equivalent in X_0

Outline

- Introduction and motivation
- Properties of our function spaces
- 3 Existence and uniqueness for state equation
- Solving the minimization problem
 - Compactness
 - Direct method
- **5** Convergence of state equation as $\delta \to 0^+$
- **6** Moving forward
- References

Minimization Problem

Goal: find $(\bar{u}, \bar{g}) \in (u_0 + X_0(\Omega_{\delta}; \mathbb{R}^n)) \times L^2(\Omega; \mathbb{R}^n)$ minimizing

$$I_{\delta}(u,g) = \int_{\Omega} F(x,u(x)) dx + rac{\lambda}{2} \|g\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2}$$

subject to: $\lambda > 0$, $g \in Z_{ad} \subset L^2(\Omega; \mathbb{R}^n)$ and $u \in u_0 + X_0$ solving

$$B_h(u,v) = \int_{\Omega} g(x) \cdot v(x) dx \quad \forall v \in X_0$$

Take Z_{ad} to be a nonempty, closed, convex, and bounded subset of $L^2(\Omega;\mathbb{R}^n)$, typically

$$Z_{ad} = \{a \leq z_i(x) \leq b, 1 \leq i \leq n\}$$

where a < b. Also, $\lambda > 0$, $g \in Z_{ad} \subset L^2(\Omega; \mathbb{R}^n)$, $u \in u_0 + X_0$. Assumptions on $F: \Omega \times \mathbb{R} \to \mathbb{R}$:

- For all $v \in \mathbb{R}$, $x \mapsto F(x, v)$ is measurable
- 2 For all $x \in \Omega$, $v \mapsto F(x, v)$ is continuous

Will also prove $X_0(\Omega; \mathbb{R}^n) \subset\subset L^2(\Omega; \mathbb{R}^n)$

Abstract Minimization Results

Theorem

Let Z_{ad} be a nonempty, closed, bounded, and convex subset of Z, $S: Z \to Y$ be a continuous linear operator, and $G: Y \to \mathbb{R}$ be convex and lower semi-continuous. Then the Banach Space optimization problem

$$\min_{g \in \mathcal{Z}_{ad}} \left\{ f(g) \ := \ \textit{G}(\textit{Sg}) + \frac{\lambda}{2} \|g\|_{\textit{Z}}^{\textit{p}} \right\}$$

has an optimal solution \bar{g} . This solution is unique if either:

- $\mathbf{0}$ $\lambda > \mathbf{0}$
- S is injective and G is strictly convex

Theorem

Let Z_{ad} be a nonempty, closed, bounded, and convex subset of Z. Let $S: Z \to Y$ be a compact operator, and $G: Y \to \mathbb{R}$ be lower semi-continuous. Then the Banach Space optimization problem

$$\min_{g \in \mathcal{Z}_{ad}} \left\{ f(g) \ := \ G(Sg) + rac{\lambda}{2} \|g\|_{\mathcal{Z}}^p
ight\}$$

has an optimal solution \bar{g} . Furthermore, if $\lambda > 0$, and G and S are linear on their respective domains, then there is a unique minimizer

Theorem (Compactness)

We have $X_0(\Omega; \mathbb{R}^n) \subset\subset L^2(\Omega; \mathbb{R}^n)$.

Definition (Local Compactness)

If E is a normed vector space, we call a continuous linear operator $T: E \to L^2(\mathbb{R}^n; \mathbb{R}^n)$ locally compact if the operator $R_KT: E \to L^2(\mathbb{R}^n; \mathbb{R}^n)$ defined via $R_Ku := \mathbb{1}_K u$ is a compact operator for every compact subset $K \subset \mathbb{R}^n$.

- Introduce new weighted nonlocal function space, prove Hilbert
- Introduce appropriate norm and inner product
- Prove convolution lemma for matrix-weighted operators
- Prove local compactness via totally bounded approach
- Think of $j(\xi) \leftrightarrow \frac{k_{\delta}(\xi)}{|\xi|^2}!$

Compactness: Notation

Let $J(\xi) = \frac{\xi \otimes \xi}{|\xi|^2} j(\xi)$, where $j : \mathbb{R}^n \to [0, \infty]$ be non-negative kernel such that j(z) = j(-z) for all $z \in \mathbb{R}^n$, $j \notin L^1(\mathbb{R}^n)$, and

$$0 < \int_{\mathbb{R}^n} \min\{1, |z|^2\} j(z) dz < \infty$$

Bi-linear form:

$$\mathcal{E}_{j}(u,v) := \frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} J(x-y)(u(x)-u(y)) \cdot (v(x)-v(y)) dxdy$$

Compactness: Notation (continued)

Energy space corresponding to \mathcal{E}_i :

$$\mathcal{D}^{j}(\mathbb{R}^{n};\mathbb{R}^{n}) := \left\{ u \in L^{2}(\mathbb{R}^{n};\mathbb{R}^{n}), \right.$$
$$\left. \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \left| \left(u(x) - u(y) \right) \cdot \frac{(x - y)}{|x - y|} \right|^{2} j(x - y) dx dy < \infty \right\}$$

If $\Omega \subset \mathbb{R}^n$ is open:

$$\mathcal{D}^{j}(\Omega;\mathbb{R}^{n}) := \{ u \in \mathcal{D}^{j}(\mathbb{R}^{n};\mathbb{R}^{n}), u = 0 \text{ on } \mathbb{R}^{n} \setminus \Omega \}$$

Properties of $\mathcal{D}^{j}(\mathbb{R}^{n};\mathbb{R}^{n})$

Lemma

For any $\Omega \subset \mathbb{R}^n$ open, the function space $\mathcal{D}^j(\Omega;\mathbb{R}^n)$ is a Hilbert space with the associated inner product

$$\langle u, v \rangle_{\mathcal{D}^j(\Omega;\mathbb{R}^n)} := \mathcal{E}_j(u, v) + \langle u, v \rangle_{L^2(\Omega;\mathbb{R}^n)},$$

which in turn induces a norm

$$\|u\|_{\mathcal{D}^{j}(\Omega;\mathbb{R}^{n})}^{2} = \mathcal{E}_{j}(u,u) + \|u\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2}$$

Proposition

If $\mathcal{D}^j(\mathbb{R}^n;\mathbb{R}^n) \subset L^2(\mathbb{R}^n;\mathbb{R}^n)$ is a locally compact embedding, then $\mathcal{D}^{j}(\Omega;\mathbb{R}^{n})\subset L^{2}(\Omega;\mathbb{R}^{n})$ is compact for every bounded and open $\Omega \subset \mathbb{R}^n$.

Convolution Lemma

Lemma

Suppose $W \in L^1(\mathbb{R}^n; \mathbb{R}^{n \times n})$. Then the corresponding convolution operator $T_W: L^2(\mathbb{R}^n; \mathbb{R}^n) \to L^2(\mathbb{R}^n; \mathbb{R}^n)$ defined via

$$[T_W u]_i := \int_{\mathbb{R}^n} W_{i,\cdot}(x-y) \cdot u(y) dy = \sum_{j=1}^n \int_{\mathbb{R}^n} W_{i,j}(x-y) u_j(y) dy$$

for each $i \in \{1, 2, ..., n\}$, is locally compact.

Strategy: Young's Inequality for continuity, density argument, show if $M \subset L^2(\Omega; \mathbb{R}^n)$ is bounded then $T_W M$ is equi-continuous

Compactness Result Recap

Theorem

If $j: \mathbb{R}^n \to [0, \infty]$ is a non-negative kernel for which j(z) = j(-z) for all $z \in \mathbb{R}^n$ and $\int_{\mathbb{R}^n} \min\{1, |z|^2\} j(z) dz < \infty$, then the embedding $\mathcal{D}^{j}(\mathbb{R}^{n};\mathbb{R}^{n})\subset L^{2}(\mathbb{R}^{n};\mathbb{R}^{n})$ is locally compact.

Pick $\tau > 0$ so $j_{\tau} := j \mathbb{1}_{\mathbb{R}^n \setminus B(0,\tau)} \in L^1(\mathbb{R}^n)$ and let $W := J_{\tau}$; define

$$J_{ au}(\xi) \;:=\; rac{j_{ au}}{\|j_{ au}\|_{L^1(\mathbb{R}^n)}} rac{\xi \otimes \xi}{|\xi|^2}$$

Proof of Compactness Result

We claim that

$$\int_{\mathbb{R}^n} J_{\tau}(\xi) d\xi = \mathbb{I}_n$$

Main diagonal:

$$\sum_{i=1}^{n} \int_{\mathbb{R}^{n}} \frac{j_{\tau}}{\|j_{\tau}\|_{L^{1}(\mathbb{R}^{n})}} \frac{\xi_{i}^{2}}{|\xi|^{2}} d\xi = \frac{1}{\|j_{\tau}\|_{L^{1}(\mathbb{R}^{n})}} \int_{\mathbb{R}^{n}} j_{\tau}(\xi) d\xi = 1$$

Off-diagonal:

$$\int_{\mathbb{R}^{n}} \frac{j_{\tau}}{\|j_{\tau}\|_{L^{1}(\mathbb{R}^{n})}} \frac{\xi_{i}\xi_{j}}{|\xi|^{2}} d\xi \ = \ 0$$

Proof of Compactness Result (continued)

Then prove that

$$\|u-T_{J_{\tau}}u\|_{L^{2}(\mathbb{R}^{n};\mathbb{R}^{n})} \leq \left(\frac{2}{\|\dot{J}_{\tau}\|_{L^{1}(\mathbb{R}^{n})}}\right)^{\frac{1}{2}}[u]_{\mathcal{D}^{j}(\mathbb{R}^{n};\mathbb{R}^{n})}.$$

- Need $j \notin L^1(\mathbb{R}^n)$ for this bound to work
- Let $M \subset \mathcal{D}^j(\mathbb{R}^n; \mathbb{R}^n)$ bounded, $K \subset \mathbb{R}^n$ compact
- Suffices to show that $R_K(M) \subset L^2(\mathbb{R}^n; \mathbb{R}^n)$ is relatively compact (recall $R_{\kappa}u = \mathbb{1}_{\kappa}u$)
- The set $\widetilde{M} := [R_K T_{J_n}](M)$ is relatively compact in $L^2(\mathbb{R}^n; \mathbb{R}^n)$
- Use convolution lemma and a totally bounded approach

Existence of Minimizers

Theorem (Existence of Minimizers)

There exists $\bar{q} \in L^2(\Omega; \mathbb{R}^n)$ minimizing

$$I_{\delta}(u,g) = \int_{\Omega} F(x,u(x)) dx + \frac{\lambda}{2} \|g\|_{L^{2}(\Omega;\mathbb{R}^{n})}^{2},$$

where $u \in u_0 + X_0$ solves

$$B_h(u,v) = \int_{\Omega} g(x) \cdot v(x) dx \quad \forall v \in X_0$$

Can use compactness to invoke abstract minimization results

Direct method

Theorem (Uniqueness of Minimizers)

The minimizer that exists is unique if F is linear in its second argument:

$$F(x, \alpha u(x) + \beta v(x)) = \alpha F(x, u(x)) + \beta F(x, v(x))$$

for $\alpha, \beta \in \mathbb{R}$

Prove indirectly, using strict convexity of $g o \|g\|_{L^2(\Omega:\mathbb{R}^n)}^2$

Outline

- Introduction and motivation
- Properties of our function spaces
- 3 Existence and uniqueness for state equation
- Solving the minimization problem
- **5** Convergence of state equation as $\delta \rightarrow 0^+$
- Moving forward
- References

Define these for $u \in L^2(\Omega; \mathbb{R}^n)$:

$$\begin{split} E_{\delta}(u) &:= \int_{\Omega_{\delta}} \int_{\Omega_{\delta}} H(x,y) k_{\delta}(x-y) \frac{|Du(x,y)|^2}{|x-y|^2} dx dy; \\ E_{0}(u) &:= \frac{1}{(n+2)(n+4)} \int_{\Omega} h(x) (2\|\mathrm{Sym}(\bigtriangledown u(x))\|_{F}^2 + \mathrm{div}(u(x))^2) dx \end{split}$$

Take to be $+\infty$ when not well-defined

Minimization of Local Functional

Theorem

Suppose $\{(\bar{u}_{\delta},\bar{g}_{\delta})\}_{\delta>0}$ denotes the sequence of minimizers for the functionals $\{I_{\delta}\}_{\delta>0}$. If $\bar{u}_{\delta}\to\bar{u}$ strongly in $L^2(\Omega;\mathbb{R}^n)$ and $\bar{g}_{\delta}\to\bar{g}$ weakly in $L^2(\Omega;\mathbb{R}^n)$, then (\bar{u},\bar{g}) is a minimizer to the local optimal control problem.

Notice $\{\bar{u}_\delta\}_{\delta>0}$ have bounded semi-norm so compactness gives a \bar{u} Notice $\{\bar{g}_\delta\}_{\delta>0}$ are bounded in $L^2(\Omega;\mathbb{R}^n)$ so compactness gives a \bar{g} Need minimizers to be preserved in limit!

\Gamma-Convergence

Definition

We say that the family $E_{\delta}: L^2(\Omega; \mathbb{R}^n) \to \mathbb{R} \cup \{+\infty\}$ Γ -converges strongly in $L^2(\Omega; \mathbb{R}^n)$ to $E_0: L^2(\Omega; \mathbb{R}^n) \to \mathbb{R} \cup \{+\infty\}$ (denoted $E_{\delta} \xrightarrow{\Gamma} E_{0}$) if:

i) **The liminf inequality:** Assume $u_{\delta} \to u$ strongly in $L^{2}(\Omega; \mathbb{R}^{n})$. Then

$$E_0(u) \leq \operatorname{liminf}_{\delta \to 0^+} E_\delta(u_\delta)$$

ii) **Recovery sequence property:** For each $u \in L^2(\Omega; \mathbb{R}^n)$, there exists a sequence $\{u_{\delta}\}_{\delta>0}$ where $u_{\delta}\to u$ strongly in $L^2(\Omega;\mathbb{R}^n)$ and

$$\mathsf{limsup}_{\delta \to 0^+} E_\delta(u_\delta) \leq E_0(u)$$

Quantitative L²-continuity

Lemma (Standard L²-continuity)

If $v \in L^2(\Omega; \mathbb{R}^n)$, then

$$\lim_{h\to 0}\int_{\mathbb{R}^n}|v(x+h)-v(x)|^2dx = 0.$$

Lemma (Quantitative L^2 -continuity)

Fix $\xi \in \mathbb{R}^n \setminus \{0\}$, and let $v \in W_0^{1,2}(\mathbb{R}^n; \mathbb{R}^n)$. Then we have

$$\int_{\mathbb{R}^n} \left| \left(v(y+\xi) - v(y) \right) \cdot \frac{\xi}{|\xi|} \right|^2 dy \le |\xi|^2 \| \operatorname{Sym}(\nabla v) \|_{L^2(\mathbb{R}^n; \mathbb{R}^{n \times n})}^2$$

Lemma (Continuous Embedding)

There exists a $\delta_0 > 0$ such that for all $\delta \in (0, \delta_0)$,

$$\|\mathbf{v}\|_{X(\Omega_{\delta};\mathbb{R}^n)} \leq \|\mathbf{v}\|_{W^{1,2}(\Omega;\mathbb{R}^n)}.$$

That is, $W_0^{1,2}(\Omega;\mathbb{R}^n) \hookrightarrow X_0(\Omega_{\delta};\mathbb{R}^n)$ for all $\delta > 0$ sufficiently small.

Lemma (Difference of Squares)

For any $\delta > 0$, we have these inequalities for all $u, v \in X(\Omega_{\delta}; \mathbb{R}^n)$:

$$\begin{aligned} E_{\delta}(u) - E_{\delta}(v) &\leq E_{\delta}(u+v)E_{\delta}(u-v); \\ ||u||_{X(\Omega_{\delta};\mathbb{R}^{n})}^{2} - ||v||_{X(\Omega_{\delta};\mathbb{R}^{n})}^{2}| &\leq ||u+v||_{X(\Omega_{\delta};\mathbb{R}^{n})}||u-v||_{X(\Omega_{\delta};\mathbb{R}^{n})} \end{aligned}$$

Lemma

For any $A \in \mathbb{R}^{n \times n}$,

$$\frac{1}{\alpha(n)}\int_{\mathbb{S}^{n-1}}|\langle A\omega,\omega\rangle|^2d\sigma(\omega)\ =\ \frac{1}{(n+2)(n+4)}(2\|A\|_F^2+\mathrm{Tr}(A)^2).$$

- Expand the inner product and square it
- Casework based on which indices of quadruple sum are equal
- Calculate each sum

Use Taylor and symmetry of H, focus on controlling

$$C\int_{\Omega_{\delta}}\int_{\Omega_{\delta}}h(y)k_{\delta}(x-y)|x-y|dxdy;$$

$$\int_{\Omega_{\delta}} \int_{\Omega_{\delta}} h(y) k_{\delta}(x-y) \Big\langle \operatorname{Sym}(\bigtriangledown u(x)) \frac{x-y}{|x-y|}, \frac{x-y}{|x-y|} \Big\rangle^{2} dx dy$$

Split first integral into cases: |x - y| > a, |x - y| < a, for a > 0arbitrary

Handle second integral with Fubini, change of variables, integral lemma with $A := \text{Sym}(\nabla u(x))$

Recovery sequence is $u_{\delta} := u!$

Proposition (Mengesha-Du 2014 (p = 2))

Suppose $\{u_{\delta}\}_{\delta>0}\subset L^2(\Omega;\mathbb{R}^n)$ is a bounded family of vector fields such that

$$\sup_{\delta>0} \int_{\Omega} \int_{\Omega} k_{\delta}(x-y) \frac{|Du_{\delta}(x,y)|^2}{|x-y|^2} dx dy \ < \ \infty,$$

where $k_{\delta}(r)r^{-2}$ is nonincreasing; then the family has compact closure in $L^2(\Omega; \mathbb{R}^n)$, and any limit point u belongs to $W^{1,2}(\Omega; \mathbb{R}^n)$

Highlights: Lim-inf Inequality Proof

$$E_0(u) \leq \operatorname{liminf}_{\delta \to 0^+} E_\delta(u_\delta)$$

- ullet Assume without loss of generality $\liminf_{\delta o 0^+} E_\delta(u_\delta) < \infty$
- Use compactness, conclude limit point $u \in W^{1,2}(\Omega; \mathbb{R}^n)$
- Prove liminf inequality for the following forms of h: indicator functions; simple functions; non-negative $L^{\infty}(\Omega)$ functions

Liminf on $A \times \Omega$ for $h(x) = \chi_A(x)$:

$$\frac{1}{(n+2)(n+4)}\int_{A}2\|\mathrm{Sym}(\bigtriangledown u(x))\|_{F}^{2}+\mathrm{div}(u(x))^{2}dx \leq \\ \mathrm{liminf}_{\delta\to 0^{+}}\int_{A}\int_{\Omega_{\delta}}k_{\delta}(x-y)\frac{|Du_{\delta}(x,y)|^{2}}{|x-y|^{2}}dxdy$$

Convolution approach: let $w_{\epsilon,\delta} := \eta_{\epsilon} * u_{\delta}$ and $w_{\epsilon} := \eta_{\epsilon} * u$, show $w_{\epsilon,\delta} \to w_{\epsilon}$ in $C^1(A;\mathbb{R}^n)$ as $\delta \to 0^+$.

Highlights: Lim-inf Inequality Proof (continued)

Intermediate step (using $h(x) = \chi_A(x)$):

$$\int_A \int_\Omega k_\delta(x-y) \frac{|D w_{\epsilon,\delta}(x,y)|^2}{|x-y|^2} dx dy \ \leq \ \int_A \int_\Omega k_\delta(x-y) \frac{|D u_\delta(x,y)|^2}{|x-y|^2} dx dy$$

Send $\delta \to 0^+$ for fixed $\epsilon > 0$:

$$\frac{1}{(n+2)(n+4)} \int_{A} (2\|\operatorname{Sym}(\bigtriangledown w_{\epsilon})\|_{F}^{2} + \operatorname{div}(w_{\epsilon}(x))^{2} dx \leq \\ \lim_{\delta \to 0^{+}} \int_{A} \int_{\Omega} k_{\delta}(x-y) \frac{|Dw_{\epsilon,\delta}(x,y)|^{2}}{|x-y|^{2}} dx dy$$

Finally send $\epsilon \to 0^+$, use Fatou

00000000

Preservation of Minimizers

Lemma

If $\{v_{\delta}\}_{\delta>0}$ is a sequence of minimizers for $\{E_{\delta}\}_{\delta>0}$ over $L^{2}(\Omega; \mathbb{R}^{n})$, v is a limit point of this sequence, and $E_{\delta} \stackrel{\Gamma}{\to} E_0$, then v is a minimizer of E_0 on $L^2(\Omega; \mathbb{R}^n)$. Finally,

$$\lim_{\delta \to 0^+} E_\delta(v_\delta) = E_0(v)$$

Minimization with Source Term

Define these functionals on $L^2(\Omega; \mathbb{R}^n)$:

$$\widetilde{E_{\delta}}(u) := E_{\delta}(u) + \int_{\Omega} g(x) \cdot u(x) dx;$$

$$\widetilde{E_0}(u) := E_0(u) + \int_{\Omega} g(x) \cdot u(x) dx$$

considering them to be $+\infty$ when not well-defined; then $\widetilde{E_\delta} \stackrel{\Gamma}{\to} \widetilde{E_n}$. and minimizers are still preserved

Since $(\bar{u}_{\delta}, \bar{g}_{\delta}) \in \mathcal{A}^{\delta}$ for each $\delta > 0$, we have $\widetilde{E_{\delta}}(\bar{u}_{\delta}) \leq 0$; rearrange and use nonlocal Poincaré to get

$$[\bar{u}_{\delta}]_{X(\Omega_{\delta};\mathbb{R}^{n})} \leq C \|\bar{g}_{\delta}\|_{L^{2}(\Omega;\mathbb{R}^{n})} \leq M$$

Finally, for a given $(f, v) \in \mathcal{A}^{loc}$,

$$I_0(\bar{u},\bar{g}) \leq \lim_{\delta \to 0^+} I_\delta(\bar{u}_\delta,\bar{g}_\delta) \leq \lim_{\delta \to 0^+} I_\delta(f,v_\delta) \leq I_0(f,v)$$

Outline

- Introduction and motivation
- Properties of our function spaces
- 3 Existence and uniqueness for state equation
- Solving the minimization problem
- **5** Convergence of state equation as $\delta \rightarrow 0^+$
- Moving forward
- **References**

Possible Next Steps

Numerics: Simulations/computing, finite element approximations

Variants on the theory: Consider other linear PD problems, nonlinear problems

Optimal Design: Perform optimization over different choices of design function *H*

Theorem (Ponce 2003)

Let $n \geq 2$, and suppose $\{f_{\delta}\}_{\delta>0} \subset L^p(\Omega)$ is a bounded sequence for which

$$\sup_{\delta>0}\int_{\Omega}\int_{\Omega}k_{\delta}(x-y)\frac{|f_{\delta}(x)-f_{\delta}(y)|^{p}}{|x-y|^{p}}dxdy<\infty,$$

then $\{f_{\delta}\}_{\delta>0}$ is relatively compact in $L^{p}(\Omega)$.

If $f_{\delta_m} \to f$ strongly in $L^p(\Omega)$, then

- If $p \in (1, \infty)$, then $f \in W^{1,p}(\Omega)$
- If p = 1, then $f \in BV(\Omega)$.

Conjectures I/II: Density

Conjecture (Global Approximation in $X_0(\Omega; \mathbb{R}^n)$)

Let $\Omega \subset \mathbb{R}^n$ be an open set with continuous boundary. Then for any $u \in X_0(\Omega; \mathbb{R}^n)$, there exists a family $\{\rho_\epsilon\}_{\epsilon>0}$ such that $\|\rho_\epsilon - u\|_{X(\Omega; \mathbb{R}^n)} \to 0$ as $\epsilon \to 0^+$. That is, $C_0^\infty(\Omega; \mathbb{R}^n)$ is a dense subset of $X_0(\Omega; \mathbb{R}^n)$.

Conjecture (Global Approximation in $X(\Omega; \mathbb{R}^n)$)

Suppose that $|\xi|^{-2}k_{\delta}(\xi) \in L^1_{loc}(\mathbb{R}^n)$, and let $\Omega \subset \mathbb{R}^n$ be an open set with continuous boundary. Then for any $u \in X(\Omega; \mathbb{R}^n)$, there exists a family $\{\rho_{\epsilon}\}_{\epsilon>0}$ such that $\|\rho_{\epsilon}-u\|_{X(\Omega; \mathbb{R}^n)} \to 0$ as $\epsilon \to 0^+$. That is, $C^{\infty}(\Omega; \mathbb{R}^n)$ is a dense subset of $X(\Omega; \mathbb{R}^n)$.

Conjecture III: Extension on X

Conjecture (Extension Lemma on *X***)**

Let $u \in X(\Omega_{\delta}; \mathbb{R}^n)$, where $\partial \Omega$ is a C^1 boundary. Suppose V is a bounded, open set such that $\Omega_{\delta} \subset \subset V$. Then there exists a bounded linear [extension] operator $E: X(\Omega_{\delta}; \mathbb{R}^n) \to X(\mathbb{R}^n; \mathbb{R}^n)$ such that Eu = u a.e. in Ω_{δ} , Eu is supported in V, and

$$||Eu|||_{X(\mathbb{R}^n;\mathbb{R}^n)} \leq C||u||_{X(\Omega_\delta;\mathbb{R}^n)}.$$

Here the constant C > 0 depends only on Ω_{δ} , and V.

- Cannot extend by zero anymore
- Anticipate may require density result to be true

Outline

- Introduction and motivation
- Properties of our function spaces
- 3 Existence and uniqueness for state equation
- Solving the minimization problem
- **5** Convergence of state equation as $\delta \to 0^+$
- Moving forward
- References

Selected References

- H. Brezis, Functional Analysis, Sobolev Spaces, and Partial Differential Equations, Springer, 2011.
- G.B. Folland, Real analysis. Modern techniques and their applications. Wiley, New York, 1984
- T. Mengesha and Q. Du (2014), The bond-based peridynamic system with Dirichlet-type volume constraint, Proceedings of the Royal Society of Edinburgh, 144A, 161–186.

Selected References (continued)

- J. Munoz (2020), Local and nonlocal optimal control in the source, https://arxiv.org/pdf/2004.02794.pdf.
- A. C. Ponce (2004), An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. (JEMS), 6:1–15.
- S. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. of Mech. Phys. Solids 48 (2001), 175–209.
- F. Troltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, American Mathematical Society, 2010.

Thanks

- Tadele Mengesha and Abner Salgado for being fantastic co-advisors and guiding my preparation to this point
- Xiaobing Feng for being an additional excellent mentor and course instructor
- Carl Sundberg for teaching essential analysis material
- The audience!