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1. INTRODUCTION

This document is designed as a fast reference for theorems and lemmas pertaining to explicit
solutions of certain second-order PDE. The ordering closely follows [Ev] but this guide is also a
suitable companion to [Han]. The focus is on the Laplace, heat, and wave equations, including
different cases as the number of dimensions changes. There is also a brief discussion of Duhamel’s
Principle to convert knowledge of solutions to some homogeneous problems to their inhomoge-
neous variants.

Throughout α(n) denotes the volume of the unit ball in Rn, while f and g represent contin-
uous functions on the respective spatial or spatial-temporal domains. Assume u has any needed
regularity, which is u ∈ C2(Rn) for spatial problems and u ∈ C2(Rn × {t > 0}) for spatial-
temporal problems. As a final remark, the inhomogeneous problem solutions can be derived from
the solutions to the homogeneous problems for the same PDE using Duhamel’s Principle.

2. LAPLACE/POISSON EQUATION

The following are solutions to4u = 0 in Rn \ {0}:
Fundamental Solution for n = 2

u(x) = − 1

2π
ln|x|

Fundamental Solution for n ≥ 3

u(x) =
1

n(n− 2)α(n)|x|n−2

The following are solutions to −4 u = f in Rn:
Poisson Equation Solution, n = 2

u(x) = − 1

2π

ˆ
R2

ln(|x− y|)f(y)dy

Poisson Equation Solution, n ≥ 3

u(x) =
1

n(n− 2)α(n)

ˆ
Rn

f(y)

|x− y|n−2
dy

Poisson Solution
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Poisson Equation on a Ball (let R > 0): the solution to the PDE{
4u = 0, x ∈ B(0, R)

u = g, x ∈ ∂B(0, R)

is

u(x) =
R2 − |x|2

nα(n)R

ˆ
∂B(0,R)

g(y)

|y − x|n
dS(y)

and the Poisson Kernel is

K(x, y) =
R2 − |x|2

nα(n)R
· 1

|x− y|n

3. HOMOGENEOUS HEAT EQUATION

General PDE for homogeneous variant:{
ut −4u = 0, (x, t) ∈ Rn × {t > 0}
u = f(x), (x, t) ∈ Rn × {t = 0}

Fundamental Solution (f = 0)

u(x, t) =
1

(4πt)
n
2

e−
|x|2
4t

NOTE: for this PDE we conventionally define the Fundamental Solution to be 0 for t < 0; this
one solution does not take into account any initial conditions and so its direct use is more limited
in problem-solving.

Homogeneous Problem

u(x, t) =
1

(4πt)
n
2

ˆ
Rn

e−
|x−y|2

4t f(y)dy

4. INHOMOGENEOUS HEAT EQUATION

General PDE for inhomogeneous variant:{
ut −4u = f(x, t), (x, t) ∈ Rn × {t > 0}
u = 0, (x, t) ∈ Rn × {t = 0}

Inhomogeneous Problem

u(x, t) =

ˆ t

0

1

(4π(t− s))
n
2

ˆ
Rn

e
− |x−y|2

4(t−s) f(y, s)dyds
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5. HOMOGENEOUS WAVE EQUATION

General PDE for homogeneous variant:
ut −4u = 0, (x, t) ∈ Rn × {t > 0}
u = f(x), (x, t) ∈ Rn × {t = 0}
ut = g(x), (x, t) ∈ Rn × {t = 0}

Homogeneous Problem for n = 1 (D’Alembert Formula)

u(x, t) =
1

2
(f(x+ t) + f(x− t)) + 1

2

ˆ x+t

x−t
g(s)ds

Homogeneous Problem for n = 2 (Poisson Formula)

u(x, t) =
1

2

 
B(x,t)

tf(y) + t2g(y) + t5 f(y) · (y − x)
(t2 − |y − x|2)

1
2

dy

Homogeneous Problem for n = 3 (Kirchhoff Formula)

u(x, t) =

 
∂B(x,t)

tg(y) + f(y) +5f(y) · (y − x)dS(y)

6. INHOMOGENEOUS WAVE EQUATION

General PDE for inhomogeneous variant:
utt −4u = f(x, t), (x, t) ∈ Rn × {t > 0}
u = 0, (x, t) ∈ Rn × {t = 0}
ut = 0, (x, t) ∈ Rn × {t = 0}

Inhomogeneous Problem for n = 1

u(x, t) =
1

2

ˆ t

0

ˆ x+t−s

x−t+s
f(y, s)dyds =

1

2

ˆ t

0

ˆ x+s

x−s
f(y, t− s)dyds

Inhomogeneous Problem for n = 2

u(x, t) =
1

2π

ˆ t

0

ˆ
B(x,t−s)

f(y, s)

((t− s)2 − |y − x|2)
1
2

dyds

Inhomogeneous Problem for n = 3

u(x, t) =

ˆ t

0

 
∂B(x,t−s)

(t− s)f(y, s)dS(y)ds = 1

4π

ˆ
B(x,t)

f(y, t− |y − x|)
|y − x|

dy
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