EXPLICIT FORMULAS CATALOGUE: SECOND-ORDER LINEAR PDE

JOSHUA M. SIKTAR

1. Introduction

This document is designed as a fast reference for theorems and lemmas pertaining to explicit solutions of certain second-order PDE. The ordering closely follows [Ev] but this guide is also a suitable companion to [Han]. The focus is on the Laplace, heat, and wave equations, including different cases as the number of dimensions changes. There is also a brief discussion of Duhamel's Principle to convert knowledge of solutions to some homogeneous problems to their inhomogeneous variants.

Throughout $\alpha(n)$ denotes the volume of the unit ball in \mathbb{R}^{n}, while f and g represent continuous functions on the respective spatial or spatial-temporal domains. Assume u has any needed regularity, which is $u \in C^{2}\left(\mathbb{R}^{n}\right)$ for spatial problems and $u \in C^{2}\left(\mathbb{R}^{n} \times\{t>0\}\right)$ for spatialtemporal problems. As a final remark, the inhomogeneous problem solutions can be derived from the solutions to the homogeneous problems for the same PDE using Duhamel's Principle.

2. Laplace/Poisson Equation

The following are solutions to $\triangle u=0$ in $\mathbb{R}^{n} \backslash\{0\}$:
Fundamental Solution for $n=2$

$$
u(x)=-\frac{1}{2 \pi} \ln |x|
$$

Fundamental Solution for $n \geq 3$

$$
u(x)=\frac{1}{n(n-2) \alpha(n)|x|^{n-2}}
$$

The following are solutions to $-\triangle u=f$ in \mathbb{R}^{n} :
Poisson Equation Solution, $n=2$

$$
u(x)=-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \ln (|x-y|) f(y) d y
$$

Poisson Equation Solution, $n \geq 3$

$$
u(x)=\frac{1}{n(n-2) \alpha(n)} \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-2}} d y
$$

Poisson Solution

Poisson Equation on a Ball (let $R>0$): the solution to the PDE

$$
\left\{\begin{array}{l}
\triangle u=0, x \in B(0, R) \\
u=g, x \in \partial B(0, R)
\end{array}\right.
$$

is

$$
u(x)=\frac{R^{2}-|x|^{2}}{n \alpha(n) R} \int_{\partial B(0, R)} \frac{g(y)}{|y-x|^{n}} d S(y)
$$

and the Poisson Kernel is

$$
K(x, y)=\frac{R^{2}-|x|^{2}}{n \alpha(n) R} \cdot \frac{1}{|x-y|^{n}}
$$

3. Homogeneous Heat Equation

General PDE for homogeneous variant:

$$
\left\{\begin{array}{l}
u_{t}-\triangle u=0,(x, t) \in \mathbb{R}^{n} \times\{t>0\} \\
u=f(x), \quad(x, t) \in \mathbb{R}^{n} \times\{t=0\}
\end{array}\right.
$$

Fundamental Solution ($f=0$)

$$
u(x, t)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} e^{-\frac{|x|^{2}}{4 t}}
$$

NOTE: for this PDE we conventionally define the Fundamental Solution to be 0 for $t<0$; this one solution does not take into account any initial conditions and so its direct use is more limited in problem-solving.

Homogeneous Problem

$$
u(x, t)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4 t}} f(y) d y
$$

4. Inhomogeneous Heat Equation

General PDE for inhomogeneous variant:

$$
\begin{cases}u_{t}-\triangle u=f(x, t), & (x, t) \in \mathbb{R}^{n} \times\{t>0\} \\ u=0, & (x, t) \in \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

Inhomogeneous Problem

$$
u(x, t)=\int_{0}^{t} \frac{1}{(4 \pi(t-s))^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4(t-s)}} f(y, s) d y d s
$$

5. Homogeneous Wave Equation

General PDE for homogeneous variant:

$$
\begin{cases}u_{t}-\Delta u=0, & (x, t) \in \mathbb{R}^{n} \times\{t>0\} \\ u=f(x), & (x, t) \in \mathbb{R}^{n} \times\{t=0\} \\ u_{t}=g(x), & (x, t) \in \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

Homogeneous Problem for $n=1$ (D'Alembert Formula)

$$
u(x, t)=\frac{1}{2}(f(x+t)+f(x-t))+\frac{1}{2} \int_{x-t}^{x+t} g(s) d s
$$

Homogeneous Problem for $n=2$ (Poisson Formula)

$$
u(x, t)=\frac{1}{2} f_{B(x, t)} \frac{t f(y)+t^{2} g(y)+t \nabla f(y) \cdot(y-x)}{\left(t^{2}-|y-x|^{2}\right)^{\frac{1}{2}}} d y
$$

Homogeneous Problem for $n=3$ (Kirchhoff Formula)

$$
u(x, t)=f_{\partial B(x, t)} t g(y)+f(y)+\nabla f(y) \cdot(y-x) d S(y)
$$

6. Inhomogeneous Wave Equation

General PDE for inhomogeneous variant:

$$
\begin{cases}u_{t t}-\triangle u=f(x, t), & (x, t) \in \mathbb{R}^{n} \times\{t>0\} \\ u=0, & (x, t) \in \mathbb{R}^{n} \times\{t=0\} \\ u_{t}=0, & (x, t) \in \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

Inhomogeneous Problem for $n=1$

$$
u(x, t)=\frac{1}{2} \int_{0}^{t} \int_{x-t+s}^{x+t-s} f(y, s) d y d s=\frac{1}{2} \int_{0}^{t} \int_{x-s}^{x+s} f(y, t-s) d y d s
$$

Inhomogeneous Problem for $n=2$

$$
u(x, t)=\frac{1}{2 \pi} \int_{0}^{t} \int_{B(x, t-s)} \frac{f(y, s)}{\left((t-s)^{2}-|y-x|^{2}\right)^{\frac{1}{2}}} d y d s
$$

Inhomogeneous Problem for $n=3$

$$
u(x, t)=\int_{0}^{t} f_{\partial B(x, t-s)}(t-s) f(y, s) d S(y) d s=\frac{1}{4 \pi} \int_{B(x, t)} \frac{f(y, t-|y-x|)}{|y-x|} d y
$$

REFERENCES

[Ev] L.C. Evans, Partial Differential Equations, 2nd Edition, American Mathematical Society, 2013.
[Han] Q. Han, A Basic Course in Partial Differential Equations, 1st Edition, Americal Mathematical Society, 2011.

