# MAXIMA PRINCIPLE CATALOGUE: ELLIPTIC SPATIAL PROBLEMS 

JOSHUA M. SIKTAR

## 1. Introduction

This is a catalogue of different maximum principle theorems, both strong and weak. This document lists out those principles stated and proven in [Ev] and [Han], and is designed as a concise reference of these results for those looking for a suitable maximum principle to solve a given problem, be it an a priori estimate, an energy method, or some other application. The emphasis on this document is on results for elliptic operators in purely spatial dimensions; in particular, results pertaining to the wave and heat equations are omitted. Finally, all maximum principles listed have corresponding minimum principles by replacing the functions in question with their opposites.

## 2. Maximum Principles with Laplacian

Theorem 2.1 (Evans p. 27). Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be harmonic in $\Omega$. Then:
(1) $\max _{\bar{\Omega}} u=\max _{\partial \Omega} u$.
(2) If $\Omega$ is connected and there exists a point $x_{0} \in \Omega$ such that $u\left(x_{0}\right)=\max _{\bar{\Omega}} u$, then $u$ is constant in $\Omega$.

## 3. MAXIMUM PRINCIPLES FOR $\triangle u+c u$

Theorem 3.1 (Han p. 113). Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ and $c$ be a continuous function in $\Omega$ with $c \leq 0$. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is such that $\triangle u+c u \geq 0$ in $\Omega$. Then $u$ attains on $\partial \Omega$ its nonnegative maximum in $\bar{\Omega}$, i.e. $\max _{\bar{\Omega}} u \leq \max _{\partial \Omega} u^{+}$.

Corollary 3.2 (Han p. 114). Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ and $c$ be a continuous function in $\Omega$ with $c \leq 0$. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is such that $\triangle u+c u \geq 0$ in $\Omega$. If we further assume $u \leq 0$ on $\partial \Omega$, then $u \leq 0$ in $\Omega$.

Corollary 3.3 (Han p. 114). Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ and $c$ be a continuous function in $\Omega$ with $c \leq 0$. Suppose $u, v \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is such that $\triangle u+c u \geq \Delta v+c v$ in $\Omega$. If we further assume $u \leq v$ on $\partial \Omega$, then $u \leq v$ in $\Omega$.

Theorem 3.4 (Han p. 117). Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ and $c$ be a continuous function in $\Omega$ with $c \leq 0$. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is such that $\triangle u+c u \geq 0$ in $\Omega$. Then $u$ attains only on $\partial \Omega$ its nonnegative maximum in $\bar{\Omega}$ unless $u$ is a constant.

Corollary 3.5 (Han p. 114). Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ and $c$ be a continuous function in $\Omega$ with $c \leq 0$. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is such that $\triangle u+c u \geq 0$ in $\Omega$. If we further assume $u \leq 0$ on $\partial \Omega$, then $u<0$ in $\Omega$ or $u$ is a nonpositive constant in $\Omega$.

## 4. Maximum Principles for General Elliptic Operators

We consider operators of the nondivergence form

$$
L u=-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i} u_{x_{i}}+c u
$$

in this section of the document.
These theorems are referred to as Weak Maximum Principles.
Theorem 4.1 (Evans p. 344). Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and $c=0$ on $\Omega$. Then:
(1) If $L u \leq 0$ in $\Omega$, then $\max _{\bar{\Omega}} u=\max _{\partial \Omega} u$.
(2) If $L u \geq 0$ in $\Omega$, then $\min _{\bar{\Omega}} u=\min _{\partial \Omega} u$.

Theorem 4.2 (Evans p. 346). Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and $c \geq 0$ on $\Omega$. Then:
(1) If $L u \leq 0$ in $\Omega$, then $\max _{\bar{\Omega}} u \leq \max _{\partial \Omega} u^{+}$.
(2) If $L u \geq 0$ in $\Omega$, then $\min _{\bar{\Omega}} u \geq \min _{\partial \Omega} u^{-}$.

In particular if $L u=0$ in $\Omega$ then $\max _{\Omega}|u|=\max _{\partial \Omega}|u|$.
This is called the Hopf Lemma.
Lemma 4.3 (Evans p. 347). Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and $c=0$ on $\Omega$. Suppose further $L u \leq 0$ in $\Omega$ and $\exists x_{0} \in \partial \Omega$ where $u\left(x_{0}\right)>u(x)$ for all $x \in \Omega$. Finally assume $U$ satisfies the interior ball condition at $x_{0}\left(\partial \Omega\right.$ being a $C^{2}$ boundary is sufficient). Then:
(1) $\frac{\partial u}{\partial n}\left(x_{0}\right)>0$.
(2) We can also obtain the above result if $c \geq 0$ in $\Omega$ and $u\left(x_{0}\right) \geq 0$.

These theorems are referred to as Strong Maximum Principles.
Theorem 4.4 (Evans p. 349). Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and $c=0$ on $\Omega$, where $\Omega$ is open, connected, and bounded. Then:
(1) If $L u \leq 0$ in $\Omega$ and $u$ attains a maximum over $\bar{\Omega}$ at an interior point then $u$ is constant in $\Omega$.
(2) If $L u \geq 0$ in $\Omega$ and $u$ attains a minimum over $\bar{\Omega}$ at an interior point then $u$ is constant in $\Omega$.
Theorem 4.5 (Evans p. 350). Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and $c \geq 0$ on $\Omega$, where $\Omega$ is open, connected, and bounded. Then:
(1) If $L u \leq 0$ in $\Omega$ and $u$ attains a nonnegative maximum over $\bar{\Omega}$ at an interior point then $u$ is constant in $\Omega$.
(2) If $L u \geq 0$ in $\Omega$ and $u$ attains a nonpositive minimum over $\bar{\Omega}$ at an interior point then $u$ is constant in $\Omega$.

## 5. HARNACK INEQUALITIES

We consider operators of the nondivergence form

$$
L u=-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i} u_{x_{i}}+c u
$$

in this section of the document.
Theorem 5.1 (Evans p. 351). Assume $u \geq 0$ is a $C^{2}$ solution of $L u=0$ in $\Omega$, and let $V \subset \subset U$ be connected. Then $\exists C>0$ depending on $V$ and $n$ such that $\sup _{V} u \leq C \inf _{V} u$.

Note: The above is stated and proven for $u$ harmonic on Evans p. 32, and Han p. 110.
Theorem 5.2 (Evans p. 86). Let $u$ be positive and harmonic in $B(0, r)$. Then

$$
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) \leq u(x) \leq r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0)
$$

Note: This is listed as an exercise in Evans.

## REFERENCES

[Ev] L.C. Evans, Partial Differential Equations, 2nd Edition, American Mathematical Society, 2013.
[Han] Q. Han, A Basic Course in Partial Differential Equations, 1st Edition, Americal Mathematical Society, 2011.

