PROPERTIES OF HARMONIC FUNCTIONS CATALOGUE

JOSHUA M. SIKTAR

1. Introduction

This document is designed as a fast reference for theorems and lemmas pertaining to properties of harmonic functions in \mathbb{R}^{n}. The ordering closely follows $[\mathrm{Ev}]$ but this guide is also a suitable companion to [Han]. The results are listed in thematic categories, but they all have to do with harmonic functions in only spatial dimensions (as well as sub/superharmonic functions). Throughout $\alpha(n)$ denotes the volume of the unit ball in \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ is an open, bounded set.

2. TERMINOLOGY

Definition 2.1. A function u is harmonic if $\triangle u=0$, subharmonic if $\triangle u \geq 0$, and superharmonic if $\triangle u \leq 0$.

3. Solutions

Lemma 3.1 (One-Dimensional). The only solutions to Laplace's Equation in \mathbb{R}^{1} are constant and linear functions.

Lemma 3.2 (Fundamental Solution). (Evans p. 22) The fundamental solution to Laplace's Equation $\triangle u=0$ is $-\frac{1}{2 \pi} \ln |x|$ on $\mathbb{R}^{2} \backslash\{0\}$ and $\frac{1}{n(n-2) \alpha(n)} \frac{1}{|x|^{n-2}}$ on $\mathbb{R}^{n} \backslash\{0\}$ for any $n \geq 3$.

Theorem 3.3 (Solution to Poisson's Equation). (Evans p. 23) The solution to Poisson's Equation $-\triangle u=f$ in \mathbb{R}^{n} is

$$
-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \ln (|x-y|) f(y) d y
$$

if $n=2$ and

$$
\frac{1}{n(n-2) \alpha(n)} \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-2}} d y
$$

if $n \geq 3$.
Lemma 3.4. (Evans p. 85) If $u \in C^{2}(\bar{\Omega})$ is harmonic then the function $v:=|D u|^{2}$ is subharmonic.

4. Mean-Value Properties

Theorem 4.1 (Mean-Value Property). (Evans p. 25) If $u \in C^{2}(\Omega)$ is harmonic then for any open ball $B(x, r) \in \Omega$,

$$
u(x)=f_{\partial B(x, r)} u(y) d S=f_{B(x, r)} u(y) d y
$$

Theorem 4.2 (Backwards Mean-Value Property). (Evans p. 25) If $u \in C^{2}(\Omega)$ satisfies

$$
u(x)=f_{\partial B(x, r)} u(y) d S=f_{B(x, r)} u(y) d y
$$

for any open ball $B(x, r) \in \Omega$, then u is harmonic in Ω.
Theorem 4.3 (Regularity of Harmonic Functions). (Evans p. 28) If $u \in C^{0}(\Omega)$ satisfies

$$
u(x)=f_{\partial B(x, r)} u(y) d S=f_{B(x, r)} u(y) d y
$$

for any open ball $B(x, r) \in \Omega$, then u is smooth in Ω.
Theorem 4.4 (Mean-Value Bound for Subharmonic Functions). (Evans p. 85) Let $v \in C^{2}(\bar{\Omega})$ be subharmonic and then for any $B(x, r) \subset \Omega$,

$$
v(x) \leq f_{B(x, r)} v d y
$$

5. Maxima Principle

Theorem 5.1 (Weak Maximum Principle). (Evans p. 27) Let $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be harmonic. Then $\max _{\bar{\Omega}} u=\max _{\partial \Omega} u$ and $\min _{\bar{\Omega}} u=\min _{\partial \Omega} u$.
Theorem 5.2 (Strong Maximum Principle). (Evans p. 27) Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be harmonic and assume Ω is connected. If there is an interior point x_{0} where u attains its maximum (or minimum) then u is constant.

Theorem 5.3 (Uniqueness of Dirichlet Problem Solution). (Evans p. 28) There exists at most one solution to

$$
\left\{\begin{array}{l}
-\triangle u=f, x \in \Omega \\
u=g, x \in \partial \Omega
\end{array}\right.
$$

where $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ and $f \in C^{0}(\Omega)$ and $g \in C^{0}(\partial \Omega)$.

6. Estimates

Theorem 6.1. (Evans p. 29) Let u be harmonic in $\Omega, B\left(x_{0}, r\right) \subset \Omega, \alpha$ be a multiindex of order k. Then

$$
\left|D^{\alpha} u\left(x_{0}\right)\right| \leq \frac{C_{k}}{r^{n+k}}\|u\|_{L^{1}\left(B\left(x_{0}, r\right)\right)}
$$

where $C_{0}=\frac{1}{\alpha(n)}$ and $C_{k}=\frac{\left(2^{n+1} n k\right)^{k}}{\alpha(n)}$ for $k \geq 1$.
Theorem 6.2 (Liouville). (Evans p. 30) If $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is harmonic and bounded, then u is constant.

Theorem 6.3. (Evans p.31) If $u: \Omega \rightarrow \mathbb{R}$ is harmonic, then it is analytic in Ω.
Theorem 6.4 (Harnack Inequality). (Evans p. 32) Let V be a proper open connected subset of Ω and let u be nonnegative and harmonic in u. Then there exists a positive constant C depending on V for which

$$
\sup _{V} u \leq C \inf _{V} u
$$

and this C is independent of u.

REFERENCES

[Ev] L.C. Evans, Partial Differential Equations, 2nd Edition, American Mathematical Society, 2013.
[Han] Q. Han, A Basic Course in Partial Differential Equations, 1st Edition, Americal Mathematical Society, 2011.

