PROPERTIES OF HARMONIC FUNCTIONS CATALOGUE

JOSHUA M. SIKTAR

1. INTRODUCTION

This document is designed as a fast reference for theorems and lemmas pertaining to properties of harmonic functions in \mathbb{R}^n . The ordering closely follows [Ev] but this guide is also a suitable companion to [Han]. The results are listed in thematic categories, but they all have to do with harmonic functions in only spatial dimensions (as well as sub/superharmonic functions). Throughout $\alpha(n)$ denotes the volume of the unit ball in \mathbb{R}^n and $\Omega \subset \mathbb{R}^n$ is an open, bounded set.

2. Terminology

Definition 2.1. A function u is harmonic if $\Delta u = 0$, subharmonic if $\Delta u \ge 0$, and superharmonic if $\Delta u \le 0$.

3. SOLUTIONS

Lemma 3.1 (One-Dimensional). *The only solutions to Laplace's Equation in* \mathbb{R}^1 *are constant and linear functions.*

Lemma 3.2 (Fundamental Solution). (Evans p. 22) The fundamental solution to Laplace's Equation $\Delta u = 0$ is $-\frac{1}{2\pi} \ln|x|$ on $\mathbb{R}^2 \setminus \{0\}$ and $\frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}}$ on $\mathbb{R}^n \setminus \{0\}$ for any $n \ge 3$.

Theorem 3.3 (Solution to Poisson's Equation). (Evans p. 23) The solution to Poisson's Equation $-\triangle u = f$ in \mathbb{R}^n is

$$-\frac{1}{2\pi}\int_{\mathbb{R}^2}\ln(|x-y|)f(y)dy$$

if n = 2 and

$$\frac{1}{n(n-2)\alpha(n)}\int_{\mathbb{R}^n}\frac{f(y)}{|x-y|^{n-2}}dy$$

if $n \geq 3$.

Lemma 3.4. (Evans p. 85) If $u \in C^2(\overline{\Omega})$ is harmonic then the function $v := |Du|^2$ is subharmonic.

1

Date: May 28, 2020.

JOSHUA M. SIKTAR

4. MEAN-VALUE PROPERTIES

Theorem 4.1 (Mean-Value Property). (Evans p. 25) If $u \in C^2(\Omega)$ is harmonic then for any open ball $B(x,r) \in \Omega$,

$$u(x) = \int_{\partial B(x,r)} u(y) dS = \int_{B(x,r)} u(y) dy$$

Theorem 4.2 (Backwards Mean-Value Property). (Evans p. 25) If $u \in C^2(\Omega)$ satisfies

$$u(x) = \oint_{\partial B(x,r)} u(y) dS = \oint_{B(x,r)} u(y) dy$$

for any open ball $B(x, r) \in \Omega$, then u is harmonic in Ω .

Theorem 4.3 (Regularity of Harmonic Functions). (Evans p. 28) If $u \in C^0(\Omega)$ satisfies

$$u(x) = \int_{\partial B(x,r)} u(y) dS = \int_{B(x,r)} u(y) dy$$

for any open ball $B(x, r) \in \Omega$, then u is smooth in Ω .

Theorem 4.4 (Mean-Value Bound for Subharmonic Functions). (Evans p. 85) Let $v \in C^2(\overline{\Omega})$ be subharmonic and then for any $B(x, r) \subset \Omega$,

$$v(x) \leq \int_{B(x,r)} v dy$$

5. MAXIMA PRINCIPLE

Theorem 5.1 (Weak Maximum Principle). (Evans p. 27) Let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be harmonic. Then $\max_{\overline{\Omega}} u = \max_{\partial\Omega} u$ and $\min_{\overline{\Omega}} u = \min_{\partial\Omega} u$.

Theorem 5.2 (Strong Maximum Principle). (Evans p. 27) Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be harmonic and assume Ω is connected. If there is an interior point x_0 where u attains its maximum (or minimum) then u is constant.

Theorem 5.3 (Uniqueness of Dirichlet Problem Solution). (Evans p. 28) There exists at most one solution to

$$\begin{cases} -\bigtriangleup u = f, x \in \Omega\\ u = g, x \in \partial \Omega \end{cases}$$

where $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ and $f \in C^0(\Omega)$ and $g \in C^0(\partial \Omega)$.

6. ESTIMATES

Theorem 6.1. (Evans p. 29) Let u be harmonic in Ω , $B(x_0, r) \subset \Omega$, α be a multiindex of order k. Then

$$\begin{split} |D^{\alpha}u(x_0)| &\leq \frac{C_k}{r^{n+k}} ||u||_{L^1(B(x_0,r))} \end{split}$$
 where $C_0 = \frac{1}{\alpha(n)}$ and $C_k = \frac{(2^{n+1}nk)^k}{\alpha(n)}$ for $k \geq 1$.

Theorem 6.2 (Liouville). (Evans p. 30) If $u : \mathbb{R}^n \to \mathbb{R}$ is harmonic and bounded, then u is constant.

Theorem 6.3. (*Evans* p .31) If $u : \Omega \to \mathbb{R}$ is harmonic, then it is analytic in Ω .

Theorem 6.4 (Harnack Inequality). (Evans p. 32) Let V be a proper open connected subset of Ω and let u be nonnegative and harmonic in u. Then there exists a positive constant C depending on V for which

$$\sup_V u \leq C \inf_V u$$

and this C is independent of u.

REFERENCES

- [Ev] L.C. Evans, Partial Differential Equations, 2nd Edition, American Mathematical Society, 2013.
- [Han] Q. Han, A Basic Course in Partial Differential Equations, 1st Edition, Americal Mathematical Society, 2011.