Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref

On the Combinatorics of Placing Balls into Ordered Bins

Joshua M. Siktar University of Tennessee-Knoxville

jsiktar@vols.utk.edu

Vedant Bonde University of Delhi

vedantbonde19@ducic.ac.in

Intro ●○○	Main 000	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref oo
Motiva	ting Qu	estions (ea	isy)			

How many ways can we split *n* balls into ℓ nonempty ordered bins [stars and bars]?
 ^(n+ℓ-1)
 ^(n+ℓ-1)

Intro ●○○	Main 000	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref oo
Motiva	ting Que	estions (eas	sy)			

- How many ways can we split *n* balls into ℓ nonempty ordered bins [stars and bars]? ^{n+ℓ-1}
 _{ℓ-1}
- How many ways can we split *n* balls into ℓ nonempty ordered bins so that each bin has at least *t* balls?

Intro ○●○	Main 000	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref oo
Motiva	ating Qu	estions (ha	ard)			

A similar-sounding, more complicated question:

 $B_{n,k}$: How many ways can we split *n* balls into any number of nonempty ordered bins where the most crowded bin has exactly *k* balls?

One more restriction:

 $M_{n,\ell,k}$: How many ways we can split *n* balls into ℓ non-empty bins such that the most crowded bin has exactly *k* balls?

Intro ○○●	Main ooo	Dominant	Non-dominant	Gen. Bins	Future o	Ref oo
Tools						

• Pure enumerative techniques-no generating functions!

Intro ○○●	Main 000	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref oo
Tools						

- Pure enumerative techniques-no generating functions!
- Binomial Coefficient Identities

Intro ○○●	Main 000	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref oo
Tools						

- Pure enumerative techniques-no generating functions!
- Binomial Coefficient Identities
- Principle of Inclusion and Exclusion

Intro oo●	Main 000	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref oo
Tools						

- Pure enumerative techniques-no generating functions!
- Binomial Coefficient Identities
- Principle of Inclusion and Exclusion
- Extensive casework

Intro 000	Main ●oo	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref oo
Main	Poculto					

Theorem (Closed form: dominant bin)

If $n, k \in \mathbb{N}^+$ with $\frac{n}{2} < k < n$ then

$$B_{n,k} = (n-k+3)2^{n-k-2}$$

Theorem (Closed form : $B_{2k,k}$ **)**

If $k \in \mathbb{N}^+$ then

$$B_{2k,k} = (k+3)2^{k-2} - 1.$$

Intro 000	Main ⊙●⊙	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref oo

Main Results (continued)

Theorem (Closed form for $B_{2k+j,k}$)

Let $j, k \in \mathbb{N}^+$ with k > j. Then the number of ways to split 2k + j balls into nonempty bins so the most crowded bin has exactly k balls is

$$B_{2k+j,k} = (k+j+3)2^{k+j-2} - (3j^2+19j+18)2^{j-4}$$

Intro 000	Main ○○●	Dominant	Non-dominant	Gen. Bins ೦೦೦೦೦೦೦೦೦೦೦	Future o	Ref oo

Main Results (continued)

Theorem (Formula for Generalized balls into bins with restrictions problem)

Suppose $n, k, \ell \in \mathbb{N}^+$ such that $\ell + k - 1 \le n \le \ell k$. Then the following identity for $M_{n,\ell,k}$ holds:

$$M_{n,\ell,k} = \sum_{t=0}^{\ell} (-1)^t \binom{\ell}{t} \left[\binom{n-tk-1}{\ell-1} - \binom{n-t(k-1)-1}{\ell-1} \right]$$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	●○		00000000000	o	oo

Let $n, \ell, k \in \mathbb{N}^+$ such that $\frac{n}{2} < k < n$ and $2 \le \ell \le n - k + 1$. Then the number of ways to split n balls into ℓ nonempty bins where the most crowded bin has exactly k balls is

$$M_{n,\ell,k} = \ell \binom{n-k-1}{\ell-2}.$$

- One bin has k balls
- Split n − k balls amongst ℓ − 1 nonempty bins; stars and bars
- Decide where the dominant bin goes

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
		00				

Theorem (Closed form: dominant bin)

If $n, k \in \mathbb{N}^+$ with $\frac{n}{2} < k < n$, then

$$B_{n,k} = (n-k+3)2^{n-k-2}.$$

- Observe $B_{n,k} = \sum_{\ell=2}^{n-k+1} \ell \binom{n-k-1}{\ell-2}$ from the lemma
- Result follows from well-known identity $\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00	●ooooooooooo	00000000000	○	oo

Lemma (Formula for $B_{2k,k}$)

If $k \in \mathbb{N}^+$ then the number of ways to split 2k balls into ℓ nonempty bins where $2 \le \ell \le k + 1$ and the most crowded bin has exactly k balls is

$$M_{2k,\ell,k} = \begin{cases} 1, & \ell = 2\\ \ell\binom{k-1}{\ell-2}, & 3 \le \ell \le k+1 \end{cases}$$

- For case $\ell = 2$, there is only one possible configuration
- For case $\ell \ge 3$, select 1 bin to fill with *k* (maximum) balls; for the rest of the balls and bins, we use stars and bars
- Maximum number of bins is k + 1

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00	o●ooooooooo		o	oo

Theorem (Closed Form for $B_{2k,k}$)

If $k \in \mathbb{N}^+$ then

$$B_{2k,k} = (k+3)2^{k-2} - 1.$$

 The result is obtained by summing up all possibilities of the previous lemma for the case 2 ≤ ℓ ≤ k + 1

In the following slides, we will derive a closed form for $B_{2k+j,k}$ when 0 < j < k. We introduce some new notation.

- T_{2k+j,[k+i,k]}: The number of ways to sort 2k + j balls into nonempty bins so that one bin has k balls and another has k + i balls (0 < i < j)
- *U*_{2k+j,l,[k+i,k]}: The aforementioned quantity where exactly *l* nonempty bins are used
- *F*_{2k+j,k,t}: The total number of ways to split 2k + j balls into nonempty bins so that at least t bins have exactly k balls. In this case t = 1 or t = 2
- G_{2k+j,l,k,t}: The aforementioned quantity where exactly l nonempty bins are used

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		00000000000	○	oo

Let $i, j, k \in \mathbb{N}^+$ with k > j > i. Then the number of ways to sort 2k + j balls into nonempty bins so one bin has k balls and another has k + i balls is

$$T_{2k+j,[k+i,k]} = \sum_{\ell=1}^{j-i} (\ell^2 + 3\ell + 2) {j-i-1 \choose \ell-1}.$$

Intro 000	Main 000	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref oo

Let $j, k \in \mathbb{N}^+$ with k > j. Then the total number of ways to split 2k + j balls into nonempty bins so that at least two bins have exactly k balls is

$$F_{2k+j,k,2} = \sum_{\ell=1}^{j} \frac{\ell^2 + 3\ell + 2}{2} {j-1 \choose \ell-1}.$$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00	ooooo●ooooo	00000000000	o	oo

Let $j, k \in \mathbb{N}^+$ with k > j. Then the total number of ways to split 2k + j balls into nonempty bins so that at least one bin has exactly k balls is

$$F_{2k+j,k,1} = \sum_{\ell=1}^{k+j} (\ell+1) \binom{k+j-1}{\ell-1} - \sum_{\ell=1}^{j} \frac{\ell^2 + 3\ell + 2}{2} \binom{j-1}{\ell-1}.$$

- We deliberately over-count number of ways to split 2k + j balls into nonempty bins so that at least one bin has exactly k balls, grouping k + j balls into ℓ nonempty bins
- We double-count configurations that have two bins with exactly k balls each (ignoring possibility that two bins have k balls)

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00	○○○○○●○○○○	00000000000	o	oo

Let $i, j, k, \ell \in \mathbb{N}^+$ with i < j < k and $3 \le \ell \le j - i + 2$. Then, the number of ways to split 2k + j balls into ℓ nonempty bins so one bin has k balls and another has k + i balls is

$$U_{2k+j,\ell,[k+i,k]} = \ell(\ell-1)\binom{j-i-1}{\ell-3}.$$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		00000000000	o	oo

Let $j, k, \ell \in \mathbb{N}^+$ with j < k and $3 \le \ell \le j + 2$. Then the total number of ways to split 2k + j balls into ℓ nonempty bins so that at least two bins have exactly k balls is

$$G_{2k+j,\ell,k,2} = \frac{\ell(\ell-1)}{2} {j-1 \choose \ell-3}.$$

Intro 000	Main 000	Dominant	Non-dominant ○○○○○○○○	Gen. Bins	Future ○	Ref oo

Let $j, k \in \mathbb{N}^+$ with j < k and $2 \le \ell \le k + j + 1$. Then the total number of ways to split 2k + j balls into ℓ nonempty bins so the most crowded bin has exactly k balls is

$$M_{2k+j,\ell,k} = \begin{cases} 0, & \ell = 2\\ \ell\binom{k+j-1}{\ell-2} - \frac{\ell^2 - \ell}{2} \binom{j-1}{\ell-3} - \sum_{i=1}^{s} (\ell^2 - \ell) \binom{j-i-1}{\ell-3}, \\ & \ell = j+2-s, 1 \le s < j\\ \ell\binom{k+j-1}{\ell-2} - \frac{\ell^2 - \ell}{2} \binom{j-1}{\ell-3}, & \ell = j+2\\ \ell\binom{k+j-1}{\ell-2}, & j+3 \le \ell \le k+j+1 \end{cases}$$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00	oooooooooooooo		o	oo
Eromo	Titlo					

Lemma (Summation Formula for $B_{2k+i,k}$)

Let $j, k \in \mathbb{N}^+$ with k > j. Then the total number of ways to split 2k + j balls into nonempty bins so the most crowded bin has exactly k balls is

$$B_{2k+j,k} = \sum_{\ell=2}^{k+j+1} \ell \binom{k+j-1}{\ell-2} - \sum_{\ell=3}^{j+2} \frac{\ell^2 - \ell}{2} \binom{j-1}{\ell-3} - \sum_{i=1}^{j-1} \sum_{\ell=3}^{j-i+2} (\ell^2 - \ell) \binom{j-i-1}{\ell-3} - 2.$$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00	○○○○○○○○○●	000000000000	o	oo
Close	d Eorm	for Barrie				

Theorem (Closed Form for $B_{2k+j,k}$)

 $P_{2k+i.k}$

Let $j, k \in \mathbb{N}^+$ with k > j. Then the number of ways to split 2k + j balls into nonempty bins so the most crowded bin has exactly k balls is

$$B_{2k+j,k} = (k+j+3)2^{k+j-2} - (3j^2+19j+18)2^{j-4}$$

 Comes from finding closed forms of the various summands in the previous lemma

• Used formula
$$\sum_{k=0}^{n} k^2 {n \choose k} = n(n+1)2^{n-2}$$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		●00000000000	o	oo
Gener	alized C	Definitions				

To generalize the previous formula for *n* balls, where *n* is not dependent on the number of bins ℓ , we define:

- *n* balls instead of 2k + j balls
- Maximum capacity is k

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		o●oooooooooo	o	oo
Conor	olizod P	line Destric	tion problem			

Generalized Bins Restriction problem

Definition (Generalized Bins Restriction Problem)

Let $n, \ell, k \in \mathbb{N}^+$. The **Generalized Bins Restriction problem** aims to find the number of ways to split n balls into ℓ bins such that the maximum number of balls in each bin is at most k.

Denote this quantity $R_{n,\ell,k}$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
				00000000000		

Generalized balls into bins with restrictions problem

Generalized Balls in Bins with restriction

Let $n, \ell, k \in \mathbb{N}^+$. This problem asks how many ways can we split *n* balls into ℓ bins such that the most crowded bin has exactly *k* balls?

Denote this quantity $M_{n,\ell,k}$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
				00000000000		

Formula for generalized bins restriction problem: $R_{n,\ell,k}$

Theorem (Formula for $R_{n,\ell,k}$)

Let $n, \ell, k \in \mathbb{N}^+$. Then the number of ways to split n balls into ℓ bins such that the maximum number of balls in each bin is at most k equals

$$R_{n,\ell,k} = \sum_{t=0}^{\ell} (-1)^t \binom{\ell}{t} \binom{n-t(k+1)+\ell-1}{\ell-1}.$$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		0000€0000000	o	oo
Proof	of Form	ula for $R_{n,\ell}$,	k			

 Ways to fill *n* balls into ℓ bins with no upper restriction on the number of bins is simply

$$\binom{n+\ell-1}{\ell-1.}$$

• Note that this would include all the configurations which satisfy the restriction condition that each bin contains at most *k* and all the configurations which do not satisfy given conditions

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		00000●000000	o	oo
Proof	of Form	nula for $R_{n,\ell}$,k			

- Assume that the bins have been labelled in some order, indexed from 1 to ℓ. Let A_i denote the finite set of all configurations such that the *i*th bin contains more than k balls
- The total number of configurations which violate the restriction condition equals

$$\left|\bigcup_{i=1}^{\ell} A_i\right|$$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		000000●00000	o	oo
Proof	of Form	nula for $R_{n,\ell}$,k			

• Using the Principle of Inclusion and Exclusion, this is equivalent to the following formula:

$$\left|\bigcup_{i=1}^{\ell} A_i\right| = \sum_{i=1}^{\ell} |A_i| - \sum_{1 \le i < j \le \ell} |A_i \cap A_j| + \sum_{1 \le i < j < k \le \ell} |A_i \cap A_j \cap A_k|$$
$$\cdots + (-1)^{\ell-1} |A_1 \cap A_2 \cdots \cap A_\ell|.$$

Use casework on each term

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		0000000●0000	o	oo
Proof	of Form	ula for $R_{n,\ell}$.k			

• Terms in First Summation ($\sum_{i=1}^{\ell} |A_i|$):

$$\sum_{i=1}^{\ell} |A_i| = \binom{\ell}{1} \binom{n-1(k+1)+\ell-1}{\ell-1}$$

• Terms in the Second Summation ($\sum_{1 \le i < j \le \ell} |A_i \cap A_j|$):

$$\sum_{1\leq i< j\leq \ell} |A_i \cap A_j| = \binom{\ell}{2} \binom{n-2(k+1)+\ell-1}{\ell-1}.$$

 Proceed similarly for the other summations given in the formula of Inclusion and Exclusion

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
				0000000000000		

Generalized balls into bins with restrictions problem

Theorem (Formula for $M_{n,\ell,k}$)

Suppose $n, \ell, k \in \mathbb{N}^+$ such that $\ell + k - 1 \le n \le \ell k$. Then the following identity for $M_{n,\ell,k}$ holds:

$$M_{n,\ell,k} = R_{n-\ell,\ell,k-1} - R_{n-\ell,\ell,k-2} = \sum_{t=0}^{\ell} (-1)^t {\ell \choose t} \left[{n-tk-1 \choose \ell-1} - {n-t(k-1)-1 \choose \ell-1} \right]$$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		○○○○○○○○○●○○	o	oo
Proof	of form	ula for $M_{n,\ell,k}$	k			

- Start by putting one ball in each bin to satisfy the "non-emptiness" condition
- Now, the restriction on each bin would be k 1 because we have put one ball in each bin
- Remaining number of balls is (n − ℓ), so we fill the bins with the rest of the (n − ℓ) balls with the above restriction
- The number of ways to distribute (n − ℓ) balls into ℓ bins such that each bin gets at most k − 1 balls is simply R_{n-ℓ, ℓ, k-1}

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		oooooooooooooooo	o	oo
Proof	of form	ula for $M_{n,\ell,i}$	k			

- There are some unwanted configurations in the above formula; need a bin with **exactly** *k* balls
- If the most crowded bin does not contain k balls, it contains at most k – 1 balls
- Distribute *n* balls into ℓ non-empty bins such that each bin contains at most *k* − 1 balls: *R*_{n-ℓ,ℓ,k-2}
- Subtract the above value from $R_{n-\ell,\ell,k-1}$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref
000	000	00		00000000000	○	oo

Identities involving $R_{n,\ell,k}$

٥

٢

٥

٠

Prominent identities involving the variable $R_{n,\ell,k}$ are highlighted below:

 $R_{n,\ell,k} = R_{\ell k-n,\ell,k}; \tag{1}$

 $R_{n,\ell,m+k} = \sum_{i=0}^{n} R_{i,\ell,m} R_{n-i,\ell,k};$ (2)

$$R_{n,\ell+1,k} = \sum_{i=0}^{k} R_{n-i,\ell,k};$$
 (3)

$$R_{n+1,\ell+1,k} - R_{n,\ell+1,k} = R_{n+1,\ell,k} - R_{n-k,\ell,k}.$$
 (4)

Intro 000	Main 000	Dominant 00	Non-dominant	Gen. Bins	Future ●	Ref oo
Future	e Proble	ms				

- Find formula for average number of bins, fixing number of balls
- Find formulas when *t* bins are "tied" for max number of balls
- Color the balls *c* different colors
- Corresponding probability distributions as $n \to \infty$

Intro	Main	Dominant	Non-dominant	Gen. Bins	Future	Ref			
000	000	00		00000000000	o	●○			
Selected References									

- V. Bonde, J.M. Siktar, On the Combinatorics of Placing Balls into Ordered Bins, https://arxiv.org/pdf/2010.09599.pdf (accepted to *INTEGERS*).
- K. Boyadzhiev, Close encounters with Stirling Numbers of the second kind. *Mathematics Magazine*, 85 (2012), 252-266.
- B. Guo, F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers. *Journal of Comp. and App. Math.*, 255 (2014), 568-579.
- Balls in Bins With Limited Capacity, MathPages, https://www.mathpages.com/home/kmath337/kmath337.htm.
- M. Muselli, Simple expressions for success run distributions in Bernoulli trials, *Statistics & Probability Letters*, **31** (1996), 121–128.

Intro 000	Main 000	Dominant 00	Non-dominant	Gen. Bins	Future o	Ref ⊙●
Conta	ct Info					

Joshua M. Siktar University of Tennessee-Knoxville

jsiktar@vols.utk.edu
https://www.linkedin.com/in/joshuasiktar1/

Vedant Bonde University of Delhi

vedantbonde19@ducic.ac.in https: //www.linkedin.com/in/vedant-bonde-0b2791135/