On the Combinatorics of Placing Balls into Ordered Bins

Joshua M. Siktar
University of Tennessee-Knoxville
jsiktar@vols.utk.edu

Vedant Bonde
University of Delhi
vedant.bonde19@ducic.ac.in

Motivating Questions (easy)

- How many ways can we split n balls into ℓ nonempty ordered bins [stars and bars]? $\binom{n+\ell-1}{\ell-1}$

Motivating Questions (easy)

- How many ways can we split n balls into ℓ nonempty ordered bins [stars and bars]? $\binom{n+\ell-1}{\ell-1}$
- How many ways can we split n balls into ℓ nonempty ordered bins so that each bin has at least t balls?

Motivating Questions (hard)

A similar-sounding, more complicated question:

$B_{n, k}$: How many ways can we split n balls into any number of nonempty ordered bins where the most crowded bin has exactly k balls?
One more restriction:
$M_{n, \ell, k}$: How many ways we can split n balls into ℓ non-empty bins such that the most crowded bin has exactly k balls?

Tools

- Pure enumerative techniques-no generating functions!

Tools

- Pure enumerative techniques-no generating functions!
- Binomial Coefficient Identities

Tools

- Pure enumerative techniques-no generating functions!
- Binomial Coefficient Identities
- Principle of Inclusion and Exclusion

Tools

- Pure enumerative techniques-no generating functions!
- Binomial Coefficient Identities
- Principle of Inclusion and Exclusion
- Extensive casework

Main Results

Theorem (Closed form: dominant bin)

If $n, k \in \mathbb{N}^{+}$with $\frac{n}{2}<k<n$ then

$$
B_{n, k}=(n-k+3) 2^{n-k-2}
$$

Theorem (Closed form : $B_{2 k, k}$)
If $k \in \mathbb{N}^{+}$then

$$
B_{2 k, k}=(k+3) 2^{k-2}-1
$$

Main Results (continued)

Theorem (Closed form for $B_{2 k+j, k}$)

Let $j, k \in \mathbb{N}^{+}$with $k>j$. Then the number of ways to split $2 k+j$ balls into nonempty bins so the most crowded bin has exactly k balls is

$$
B_{2 k+j, k}=(k+j+3) 2^{k+j-2}-\left(3 j^{2}+19 j+18\right) 2^{j-4} .
$$

Main Results (continued)

Theorem (Formula for Generalized balls into bins with restrictions problem)

Suppose $n, k, \ell \in \mathbb{N}^{+}$such that $\ell+k-1 \leq n \leq \ell k$. Then the following identity for $M_{n, \ell, k}$ holds:

$$
M_{n, \ell, k}=\sum_{t=0}^{\ell}(-1)^{t}\binom{\ell}{t}\left[\binom{n-t k-1}{\ell-1}-\binom{n-t(k-1)-1}{\ell-1}\right]
$$

Lemma

Let $n, \ell, k \in \mathbb{N}^{+}$such that $\frac{n}{2}<k<n$ and $2 \leq \ell \leq n-k+1$. Then the number of ways to split n balls into ℓ nonempty bins where the most crowded bin has exactly k balls is

$$
M_{n, \ell, k}=\ell\binom{n-k-1}{\ell-2}
$$

- One bin has k balls
- Split $n-k$ balls amongst $\ell-1$ nonempty bins; stars and bars
- Decide where the dominant bin goes

Theorem (Closed form: dominant bin)

If $n, k \in \mathbb{N}^{+}$with $\frac{n}{2}<k<n$, then

$$
B_{n, k}=(n-k+3) 2^{n-k-2}
$$

- Observe $B_{n, k}=\sum_{\ell=2}^{n-k+1} \ell\binom{n-k-1}{\ell-2}$ from the lemma
- Result follows from well-known identity $\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1}$

Lemma (Formula for $B_{2 k, k}$)

If $k \in \mathbb{N}^{+}$then the number of ways to split $2 k$ balls into ℓ nonempty bins where $2 \leq \ell \leq k+1$ and the most crowded bin has exactly k balls is

$$
M_{2 k, \ell, k}= \begin{cases}1, & \ell=2 \\ \ell\binom{k-1}{\ell-2}, & 3 \leq \ell \leq k+1\end{cases}
$$

- For case $\ell=2$, there is only one possible configuration
- For case $\ell \geq 3$, select 1 bin to fill with k (maximum) balls; for the rest of the balls and bins, we use stars and bars
- Maximum number of bins is $k+1$

Theorem (Closed Form for $B_{2 k, k}$)

If $k \in \mathbb{N}^{+}$then

$$
B_{2 k, k}=(k+3) 2^{k-2}-1
$$

- The result is obtained by summing up all possibilities of the previous lemma for the case $2 \leq \ell \leq k+1$

Formula for $B_{2 k+j, k}$

In the following slides, we will derive a closed form for $B_{2 k+j, k}$ when $0<j<k$. We introduce some new notation.

- $T_{2 k+j,[k+i, k]}$: The number of ways to sort $2 k+j$ balls into nonempty bins so that one bin has k balls and another has $k+i$ balls $(0<i<j)$
- $U_{2 k+j, \ell,[k+i, k]}$: The aforementioned quantity where exactly ℓ nonempty bins are used
- $F_{2 k+j, k, t}$: The total number of ways to split $2 k+j$ balls into nonempty bins so that at least t bins have exactly k balls. In this case $t=1$ or $t=2$
- $G_{2 k+j, \ell, k, t}$: The aforementioned quantity where exactly ℓ nonempty bins are used

Lemma

Let $i, j, k \in \mathbb{N}^{+}$with $k>j>i$. Then the number of ways to sort $2 k+j$ balls into nonempty bins so one bin has k balls and another has $k+i$ balls is

$$
T_{2 k+j,[k+i, k]}=\sum_{\ell=1}^{j-i}\left(\ell^{2}+3 \ell+2\right)\binom{j-i-1}{\ell-1} .
$$

Lemma

Let $j, k \in \mathbb{N}^{+}$with $k>j$. Then the total number of ways to split $2 k+j$ balls into nonempty bins so that at least two bins have exactly k balls is

$$
F_{2 k+j, k, 2}=\sum_{\ell=1}^{j} \frac{\ell^{2}+3 \ell+2}{2}\binom{j-1}{\ell-1} .
$$

Lemma

Let $j, k \in \mathbb{N}^{+}$with $k>j$. Then the total number of ways to split $2 k+j$ balls into nonempty bins so that at least one bin has exactly k balls is

$$
F_{2 k+j, k, 1}=\sum_{\ell=1}^{k+j}(\ell+1)\binom{k+j-1}{\ell-1}-\sum_{\ell=1}^{j} \frac{\ell^{2}+3 \ell+2}{2}\binom{j-1}{\ell-1}
$$

- We deliberately over-count number of ways to split $2 k+j$ balls into nonempty bins so that at least one bin has exactly k balls, grouping $k+j$ balls into ℓ nonempty bins
- We double-count configurations that have two bins with exactly k balls each (ignoring possibility that two bins have k balls)

Lemma

Let $i, j, k, \ell \in \mathbb{N}^{+}$with $i<j<k$ and $3 \leq \ell \leq j-i+2$. Then, the number of ways to split $2 k+j$ balls into ℓ nonempty bins so one bin has k balls and another has $k+i$ balls is

$$
U_{2 k+j, \ell,[k+i, k]}=\ell(\ell-1)\binom{j-i-1}{\ell-3}
$$

Lemma

Let $j, k, \ell \in \mathbb{N}^{+}$with $j<k$ and $3 \leq \ell \leq j+2$. Then the total number of ways to split $2 k+j$ balls into ℓ nonempty bins so that at least two bins have exactly k balls is

$$
G_{2 k+j, \ell, k, 2}=\frac{\ell(\ell-1)}{2}\binom{j-1}{\ell-3} .
$$

Lemma

Let $j, k \in \mathbb{N}^{+}$with $j<k$ and $2 \leq \ell \leq k+j+1$. Then the total number of ways to split $2 k+j$ balls into ℓ nonempty bins so the most crowded bin has exactly k balls is

$$
M_{2 k+j, \ell, k}= \begin{cases}0, & \ell=2 \\ \ell\binom{k+j-1}{\ell-2}-\frac{\ell^{2}-\ell}{2}\binom{j-1}{\ell-3}-\sum_{i=1}^{s}\left(\ell^{2}-\ell\right)\binom{j-i-1}{\ell-3}, \\ \ell\binom{k+j-1}{\ell-2}-\frac{\ell^{2}-\ell}{2}\binom{j-1}{\ell-3}, & \ell=j+2-s, 1 \leq s<j \\ \ell\binom{k+j-1}{\ell-2}, & j+3 \leq \ell \leq k+j+1\end{cases}
$$

Frame Title

Lemma (Summation Formula for $B_{2 k+j, k}$)

Let $j, k \in \mathbb{N}^{+}$with $k>j$. Then the total number of ways to split $2 k+j$ balls into nonempty bins so the most crowded bin has exactly k balls is

$$
\begin{array}{r}
B_{2 k+j, k}=\sum_{\ell=2}^{k+j+1} \ell\binom{k+j-1}{\ell-2}-\sum_{\ell=3}^{j+2} \frac{\ell^{2}-\ell}{2}\binom{j-1}{\ell-3} \\
-\sum_{i=1}^{j-1} \sum_{\ell=3}^{j-i+2}\left(\ell^{2}-\ell\right)\binom{j-i-1}{\ell-3}-2 .
\end{array}
$$

Closed Form for $B_{2 k+j, k}$

Theorem (Closed Form for $B_{2 k+j, k}$)

Let $j, k \in \mathbb{N}^{+}$with $k>j$. Then the number of ways to split $2 k+j$ balls into nonempty bins so the most crowded bin has exactly k balls is

$$
B_{2 k+j, k}=(k+j+3) 2^{k+j-2}-\left(3 j^{2}+19 j+18\right) 2^{j-4} .
$$

- Comes from finding closed forms of the various summands in the previous lemma
- Used formula $\sum_{k=0}^{n} k^{2}\binom{n}{k}=n(n+1) 2^{n-2}$

Generalized Definitions

To generalize the previous formula for n balls, where n is not dependent on the number of bins ℓ, we define:

- n balls instead of $2 k+j$ balls
- Maximum capacity is k

Generalized Bins Restriction problem

Definition (Generalized Bins Restriction Problem)

Let $n, \ell, k \in \mathbb{N}^{+}$. The Generalized Bins Restriction problem aims to find the number of ways to split n balls into ℓ bins such that the maximum number of balls in each bin is at most k.

Denote this quantity $R_{n, \ell, k}$

Generalized balls into bins with restrictions problem

Generalized Balls in Bins with restriction

Let $n, \ell, k \in \mathbb{N}^{+}$. This problem asks how many ways can we split n balls into ℓ bins such that the most crowded bin has exactly k balls?

Denote this quantity $M_{n, \ell, k}$

Formula for generalized bins restriction problem: $R_{n, \ell, k}$

Theorem (Formula for $R_{n, \ell, k}$)

Let $n, \ell, k \in \mathbb{N}^{+}$. Then the number of ways to split n balls into ℓ bins such that the maximum number of balls in each bin is at most k equals

$$
R_{n, \ell, k}=\sum_{t=0}^{\ell}(-1)^{t}\binom{\ell}{t}\binom{n-t(k+1)+\ell-1}{\ell-1}
$$

Proof of Formula for $R_{n, \ell, k}$

- Ways to fill n balls into ℓ bins with no upper restriction on the number of bins is simply

$$
\binom{n+\ell-1}{\ell-1 .}
$$

- Note that this would include all the configurations which satisfy the restriction condition that each bin contains at most k and all the configurations which do not satisfy given conditions

Proof of Formula for $R_{n, \ell, k}$

- Assume that the bins have been labelled in some order, indexed from 1 to ℓ. Let A_{i} denote the finite set of all configurations such that the $i^{\text {th }}$ bin contains more than k balls
- The total number of configurations which violate the restriction condition equals

$$
\left|\bigcup_{i=1}^{\ell} A_{i}\right| .
$$

Proof of Formula for $R_{n, \ell, k}$

- Using the Principle of Inclusion and Exclusion, this is equivalent to the following formula:

$$
\begin{gathered}
\left|\bigcup_{i=1}^{\ell} A_{i}\right|=\sum_{i=1}^{\ell}\left|A_{i}\right|-\sum_{1 \leq i<j \leq \ell}\left|A_{i} \cap A_{j}\right|+\sum_{1 \leq i<j<k \leq \ell}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
\cdots+(-1)^{\ell-1}\left|A_{1} \cap A_{2} \cdots \cap A_{\ell}\right| .
\end{gathered}
$$

- Use casework on each term

Proof of Formula for $R_{n, \ell, k}$

- Terms in First Summation $\left(\sum_{i=1}^{\ell}\left|A_{i}\right|\right)$:

$$
\sum_{i=1}^{\ell}\left|A_{i}\right|=\binom{\ell}{1}\binom{n-1(k+1)+\ell-1}{\ell-1} .
$$

- Terms in the Second Summation ($\sum_{1 \leq i<j \leq \ell}\left|A_{i} \cap A_{j}\right|$):

$$
\sum_{1 \leq i<j \leq \ell}\left|A_{i} \cap A_{j}\right|=\binom{\ell}{2}\binom{n-2(k+1)+\ell-1}{\ell-1} .
$$

- Proceed similarly for the other summations given in the formula of Inclusion and Exclusion

Generalized balls into bins with restrictions problem

Theorem (Formula for $M_{n, \ell, k}$)

Suppose $n, \ell, k \in \mathbb{N}^{+}$such that $\ell+k-1 \leq n \leq \ell k$. Then the following identity for $M_{n, \ell, k}$ holds:

$$
\begin{aligned}
M_{n, \ell, k}= & R_{n-\ell, \ell, k-1}-R_{n-\ell, \ell, k-2}= \\
& \sum_{t=0}^{\ell}(-1)^{t}\binom{\ell}{t}\left[\binom{n-t k-1}{\ell-1}-\binom{n-t(k-1)-1}{\ell-1}\right]
\end{aligned}
$$

Proof of formula for $M_{n,, k}$

- Start by putting one ball in each bin to satisfy the "non-emptiness" condition
- Now, the restriction on each bin would be $k-1$ because we have put one ball in each bin
- Remaining number of balls is $(n-\ell)$, so we fill the bins with the rest of the $(n-\ell)$ balls with the above restriction
- The number of ways to distribute $(n-\ell)$ balls into ℓ bins such that each bin gets at most $k-1$ balls is simply $R_{n-\ell, \ell, k-1}$

Proof of formula for $M_{n,, k}$

- There are some unwanted configurations in the above formula; need a bin with exactly k balls
- If the most crowded bin does not contain k balls, it contains at most $k-1$ balls
- Distribute n balls into ℓ non-empty bins such that each bin contains at most $k-1$ balls: $R_{n-\ell, \ell, k-2}$
- Subtract the above value from $R_{n-\ell, \ell, k-1}$

Identities involving $R_{n, \ell, k}$

Prominent identities involving the variable $R_{n, \ell, k}$ are highlighted below:

$$
\begin{equation*}
R_{n, \ell, k}=R_{\ell k-n, \ell, k} \tag{1}
\end{equation*}
$$

\bullet

$$
\begin{equation*}
R_{n, \ell, m+k}=\sum_{i=0}^{n} R_{i, \ell, m} R_{n-i, \ell, k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
R_{n, \ell+1, k}=\sum_{i=0}^{k} R_{n-i, \ell, k} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
R_{n+1, \ell+1, k}-R_{n, \ell+1, k}=R_{n+1, \ell, k}-R_{n-k, \ell, k} \tag{4}
\end{equation*}
$$

Future Problems

- Find formula for average number of bins, fixing number of balls
- Find formulas when t bins are "tied" for max number of balls
- Color the balls c different colors
- Corresponding probability distributions as $n \rightarrow \infty$

Selected References

- V. Bonde, J.M. Siktar, On the Combinatorics of Placing Balls into Ordered Bins,
https://arxiv.org/pdf/2010.09599.pdf (accepted to INTEGERS).
- K. Boyadzhiev, Close encounters with Stirling Numbers of the second kind. Mathematics Magazine, 85 (2012), 252-266.
- B. Guo, F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers. Journal of Comp. and App. Math., 255 (2014), 568-579.
- Balls in Bins With Limited Capacity, MathPages, https://www.mathpages.com/home/kmath337/kmath337.htm.
- M. Muselli, Simple expressions for success run distributions in Bernoulli trials, Statistics \& Probability Letters, 31 (1996), 121-128.

Contact Info

Joshua M. Siktar University of Tennessee-Knoxville

jsiktar@vols.utk.edu
https://www.linkedin.com/in/joshuasiktar1/
Vedant Bonde
University of Delhi
vedantbonde19@ducic.ac.in https:
//www.linkedin.com/in/vedant-bonde-0b2791135/

