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1. INTRODUCTION

This document is designed as a log, a journal if you will, tracking problems I studied in prepa-
ration for the University of Tennessee preliminary examinations in analysis and partial differential
equations. I broke them up into rough thematic categories, though the content of the two exams
does overlap in a select few areas. Some notes:

(1) Some problems are based on old prelim problems, or old homework questions, but ask
questions that are different in some way, as to provide more practice.

(2) Some problems naturally fall into more than one category, in which case I only listed them
in one category

(3) Hints for some problems are provided at the end
(4) The problems are not arranged by order of difficulty, but the difficulty varies widely be-

tween problems (at least in my opinion).

2. NOTATIONAL ASSUMPTIONS

(1) B(x, r) denotes an open ball with center x and radius r > 0. B(x, r) is the closed ball
with center x and radius r > 0.

(2) Ω is an open, bounded subset of Rn
(3) ΩT = Ω× [0, T ] is a parabolic domain
(4) (X,A, µ) denotes a measure space where A is a sigma-algebra on X and µ a measure; if

not stated otherwise take µ to be a positive [real-valued] measure
(5) m denotes Lebesgue measure on the real line
(6) α(n) denotes the volume of a unit ball in Rn; also, nα(n) will be its surface area. Some

texts, such as [Han], use ωn in place of α(n).
(7) H(D) for a set D denotes that a function is [complex] holomorphic in D

3. AUTOMORPHISMS

3.1. Problem 1. Let a ∈ D and consider the function φa(z) = z−a
1−āz . This is called a disc auto-

morphism.
a. Show that φ maps D into D.
b. Show that φa is invertible, and its inverse is φ−a.
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c. Suppose f : D→ D is such that f(a) = 0 for some a ∈ D. Construct a function depending on
f for which we can invoke Schwarz’s Lemma, and use it to derive a pair of inequalities involving
f and f ′, respectively.

4. CHARACTERISTICS AND FIRST-ORDER PDE

4.1. Problem 1. If u is constant along a C1 characteristic curve ((x(t), y(t)) in R2 show that

dx

dt

∂u

∂x
+
dy

dt

∂u

∂y
= 0

How is this related to how we derive the characteristic differential equations corresponding to a
linear first-order PDE?

4.2. Problem 2. a. Show that U(x, y, u) = 1
2x

2 + 1
y is a conserved quantity of the PDE xux +

y2uy = u in {(x, y) ∈ R2, y > 0}.
b. Show that U(x, y, u) = x

u is a conserved quantity of the PDE xux + y2uy = u assuming a
priori that u > 0.

c. Show that U(x, y, u) = xe−
1
2u2 is a conserved quantity of the PDE xux + uy = 1.

d. Show that U(x, y, u) = u− y is a conserved quantity of the PDE xux + uy = 1.

4.3. Problem 3. Consider the following PDE in R2

xyux + (x+ 1)uy = u

Where are the following hypersurfaces characteristic, if anywhere?
a. {y = 0}
b. {x = y}
c. {x = −y}

4.4. Problem 4. Consider the following PDE on R2 :

2yux + uy = u4

with data u(x, 0) = f(x). Assume f ∈ C0(R).
a. Show that the PDE is noncharacteristic on Σ := {y = 0}.
b. Find a different hypersurface on which this PDE is characteristic at the origin (ignore the

initial condition here).
c. Identify the compatibility condition for the given PDE in terms of the initial data f .

4.5. Problem 5. Consider the following PDE:

2xyux + uy = u4

Assume there is initial data f ∈ C2(R) for which u(x, 0) = f(x) for x ∈ R.
a. Show that if f ≥ 0 on all of R, then a solution exists for all x ∈ R, y < 0
b. Show that if f ≤ 0 on all of R, then a solution exists for all x ∈ R, y > 0
c. Show that if a solution exists for all x ∈ R, y > 0 (or for all x ∈ R, y < 0), then f must either

be a constant or a linear function.
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4.6. Problem 6. Let T be the triangle bounded by the lines y = x, y = 0, and y = 2−x. Consider
the PDE

xux + 2yuy = u2

with boundary conditions

u(x, x) = f(x), x ∈ (0, 1)

u(x, 2− x) = x2, x ∈ (1, 2)

u(x, 0) = g(x), x ∈ (0, 2)

Find conditions on f and g that ensure the solution is continuous on T , or prove that no such
conditions exist.

4.7. Problem 7. Let the initial hyper-surface be Σ := {y = 2x} ⊂ R2. Find all functions
f ∈ C1(R) such that the PDE ux + 2uy = u2 satisfies the compatibility condition with u = f(x)
on Σ. For each such solution, on what subset of R2 does it exist?

5. CLASSIFICATION OF SECOND-ORDER LINEAR PDE

5.1. Problem 1. For each PDE listed, write the principal part and determine whether the PDE is
elliptic, hyperbolic, or parabolic.

a. Laplace’s Equation in R2

b. Heat Equation in R× R
c. Wave Equation in R× R

5.2. Problem 2. Let A denote the subset of R2 in which a given PDE is elliptic. Explicitly con-
struct a second-order linear PDE for which the set A is not convex. Note that the empty set is
vacuously convex, so A cannot be empty in your example.

5.3. Problem 3. Recall that we classify second-order linear PDEs pointwise; that is, the classifi-
cation can change in different subsets of Rn.

a. Show that if the principal part of the operator representing the PDE has constant coefficients,
then the classification of the PDE is the same in all of Rn.

b. Explicitly construct a second-order linear PDE with the same classification (elliptic, hyper-
bolic, parabolic) in R2 that does not have all constant coefficients.

5.4. Problem 4. Consider the second-order partial differential operator in {(x, y) : x, y > 0} ⊂
R2:

Lu = (α1x+ β1y)uxx + (2α2x+ 2β2y)uxy + (α1x+ β1y)uxy

Devise a criterion (a set of inequalities comparing α1, α2, β1, β2) which ensures the PDE is
elliptic in all of {(x, y) : x, y > 0} ⊂ R2.
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6. CONFORMAL MAPS

These are Carl Sundberg’s favorite. As he did, I encourage you to draw pictures for yourself.
Lots of them.

6.1. Problem 1. a. Find a sequence of conformal maps between the quarter plane {z ∈ C,<z >
0,=z > 0} and the upper half plane {z ∈ C,=z > 0}.

b. [January 2011 UTK Analysis Prelim Problem 3] Find a sequence of conformal maps between
the upper half plane {z ∈ C,=z > 0} and D.

c. Find a sequence of conformal maps between the lower half plane {z ∈ C,=z < 0} and D.
d. Find a sequence of conformal maps between the left half plane {z ∈ C,<z < 0} and D.
e. Find a sequence of conformal maps between the right half plane {z ∈ C,<z > 0} and D.
f. [August 2011 UTK Analysis Prelim Problem 4] Find a sequence of conformal maps between

the unbounded sector Ω := {z ∈ C, |z|> 1, 0 < Arg(z) < π
3 } and D.

g. [January 2012 UTK Analysis Prelim Problem 1] Find a sequence of conformal maps between
the slitted disc D \ [0, 1) and D.

h. Find a sequence of conformal maps between the quarter plane {z ∈ C,<z > 0,=z > 0} and
the right half plane {z ∈ C,<z > 0}.

i. Find a sequence of conformal maps between the strip Ω := {z ∈ C,−1 < =z < 1} and D.
j. [August 2012 UTK Analysis Prelim Problem 5] Find a sequence of conformal maps between

the strip Ω := {z ∈ C, 0 < <z < 1} and D.
k. Find a sequence of conformal maps between the right half-plane {z ∈ C,<z > 0} and the

set C \ {z ∈ R, z ≤ 0}.
l. Find a sequence of conformal maps between the “bulb" {z ∈ C,=z < 0} ∪ (D ∩ {=z > 0})

and D.
m. Find a sequence of conformal maps between D \ [0.5, 1) and C \ [0, 1].

6.2. Problem 2. [Found on Math StackExchange] Provide a contradiction to proof to show that

A := D \ {0}

B := {z ∈ C, 1 < |z|< 2}

are not conformally equivalent.

7. DERIVATIVE INEQUALITIES FOR HOLOMORPHIC FUNCTIONS AND THE IDENTITY
THEOREM

7.1. Problem 1. State and prove Liouville’s Theorem for complex-valued functions.

7.2. Problem 2. a. Suppose f : D → D is holomorphic, where f(0) = 0 and f ′(0) = 0. Prove
that |f(z)|≤ |z|2 in all of D.

b. Additionally assume f ′ : D → D in addition to the assumptions in part a. Prove that
|f ′(z)|≤ |z| and |f ′′(0)|≤ 1.
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7.3. Problem 3. Show there does not exist a function f : D→ C holomorphic such that

f

(
1

n

)
=

1

n2

for n ∈ N+ that are multiples of 4 and

f

(
1

n

)
=
−1

n2

for n ∈ N+ \ {1} that are not multiples of 4.

7.4. Problem 4. a. Suppose f : D→ C is holomorphic and

f

(
1

n

)
=

n2

1 + 2n2
+

n

1 + 2n

for n ∈ N+ \ {1}. Prove that

f(z) =
1

z2 + 2
+

1

z + 2
in D.
b. Why can this result not be extended to the entire complex plane? That is, if f is actually entire

with the same restrictions otherwise, what happens?

7.5. Problem 5. Suppose f is entire and has real and imaginary parts that are identical to each
other in D. Prove that (i+ 1)f is purely imaginary, and (i− 1)f is purely real.

7.6. Problem 6. Let f : D→ D be holomorphic with zeros at 0 and w.
a. Prove that if either zero is not isolated then f must identically be equal to 0.
b. Assuming that both zeros are isolated, define g(z) := f(z)

z(z−w) on D. Show g is itself holomor-
phic on D.

c. Show that if there exists a point z0 in D where |g(z0)|> 1
|w||1−w| , then g is a constant.

7.7. Problem 7. Let f : D→ D be holomorphic, let w ∈ D \ {0}. Suppose f has a zero of order
m1 at 0 and a zero of order m2 at w, where 1 ≤ m1,m2 <∞.

a. Prove that for any z ∈ D,

|f(z)|≤ |z|min 1−m1+m2,1−m2+m1

b. For which functions f is this bound no better than the one provided by Schwarz’s Lemma?

7.8. Problem 8. Let f : D→ C be holomorphic. Suppose <f > 0 on all of D.
a. Show that <f ′(0) = 0.
b. [UTK Analysis Prelim January 2016 Problem 5] Show that |f ′(0)|≤ 2<f(0).

7.9. Problem 9. Suppose f : D̄ → C is holomorphic in D̄. Also suppose f is real-valued on ∂D.
Show that f is constant on D.
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7.10. Problem 10. Let f : E → C be holomorphic, where E is an open subset of C. Prove that f
is harmonic in E.

7.11. Problem 11. Suppose u : D→ R is a real-valued nonnegative function such that u(x, y) =
(x2 + y2 + 1)v(x, y) is harmonic in D. Prove that

u(0) ≥ 1

8π

(ˆ 2π

0

√
|u(eiθ)|dθ

)2

7.12. Problem 12. Suppose f : D→ D is holomorphic. Let f
(

1
2

)
= 0.

a. [UTK Analysis Prelim August 2013 Problem 6] Find the maximum possible value of |f(0)|
and find the functions f attaining this value. Justify your answer.

b. [My variant] Prove that for any f satisfying these conditions, that
∣∣f ′ (1

2

)∣∣ ≤ 4
3 .

7.13. Problem 13. Suppose w ∈ D \ {0} and f : D→ D is analytic with f(0) = f(w) = 0.
a. [UTK Analysis Prelim August 2016 Problem 6] Prove |f ′(0)|≤ |w|.
b. [UTK Analysis Prelim August 2016 Problem 6] Characterize all possible functions f where

|f ′(0)|= |w|.
c. [My variant] Prove |f ′(w)|≤ 1

1−|w|2 .
d. [My variant] Prove |f(w)|≤ |w|.
e. [My variant] Prove |f ′(0)|≤ 1− |w|2.

8. DIFFERENTIATION IN THE LEBESGUE SENSE

8.1. Problem 1. Let f : [0, 1]→ R be absolutely continuous on [0, 1], and let g be a function map-
ping [0, 1] onto the positive real numbers. Show that h(x) := f(x)e−g(x) must also be absolutely
continuous on [0, 1].

8.2. Problem 2. Some sections of this problem were proposed by Carl Sundberg in MATH 545.
Throughout, let f, g : [a, b]→ R be absolutely continuous.
a. Show that the sum of any two absolutely continuous functions is also absolutely continuous.
b. Show that the difference of any two absolutely continuous functions is also absolutely con-

tinuous.
c. Show that the square of any absolutely continuous function is absolutely continuous.
d. From parts a-c deduce that fg must be absolutely continuous.
e. Deduce the integration by parts formula

ˆ b

a
f(x)g′(x)dm = f(b)g(b)− f(a)g(a)−

ˆ b

a
f ′(x)g(x)dm

8.3. Problem 3. Some sections of this problem were proposed by Carl Sundberg in MATH 545.
a. Let f : R→ R be such that |f(x)− f(y)|≤ C|x− y|α for all x, y ∈ R where α > 1, C > 0.

Show that f is a constant. This is called Hölder continuity with exponent α.
b. Let f : R → R be such that |f(x) − f(y)|≤ C|x − y| for all x, y ∈ R where C > 0. Show

that f ′ is bounded.
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c. For the bound obtained in part b, give an example of a function where the bound on f ′ is
sharp (i.e. where the obtained nonstrict inequality is an equality)

d. Verify that the result of part a still holds for an entire function f : C→ C.
e. Let f : [0, 1]→ R be such that |f(x)− f(y)|≤ C|x− y| for all x, y ∈ [0, 1] where C > 0.
f. Show that if f : [`, h] → R is absolutely continuous, then for any α > 0 the map g :

[α`, αh]→ R defined as g(x) := f(αx) is itself absolutely continuous on [α`, αh]
g. Show that if f : [`, h] → R is absolutely continuous, then the map g : [` + t, h + t] → R

defined as g(x) := f(x+ t) is itself absolutely continuous on [`+ t, h+ t] for each t ∈ R.
h. Use parts f and g to conclude that part e extends to any bounded interval [a, b] ⊂ R.
i. Suppose f : [a, b] → R is absolutely continuous and let p > 1. Show that |f |p is absolutely

continuous.
j. Using part i, show that for f and p satisfying the conditions of part i,

d

dx
|f |p= pfp−1sign(f)f ′

8.4. Problem 4. Let f : Rn → R be continuous. Show that f is locally integrable in Lp for any
1 ≤ p <∞.

8.5. Problem 5. This problem was a homework problem provided by Carl Sundberg.
a. Let (X,A, µ) be a measure space, φ : [0,∞) → [0,∞) be absolutely continuous with

φ(0) = 0, f ∈ L1(µ). Prove that
ˆ
φ ◦ fdµ =

ˆ ∞
0

φ′(λ)µ([|f |> λ])dλ

b. Let 1 < p < ∞, with f(1) = 0 and f be absolutely continuous on [1, N ] for all N > 1.
Suppose that f ′ ∈ Lp([1,∞)). Show that

ˆ ∞
1

|f(x)|p

xp
dx <∞

9. ELLIPTIC PDE

9.1. Problem 1. a. [Henry Simpson Lecture] Let u ∈ C2(Ω) ∩ C1(Ω̄) solve{
4u = u3, x ∈ Ω

u = 0, x ∈ ∂Ω.

Notice that the zero function is clearly a solution. Prove that the zero function is the only solution
via a Maximum Principle.

b. [Henry Simpson Lecture] Prove that the zero function is the only solution via an energy
method.

c. [Henry Simpson Lecture] Prove the zero function is the only solution by the following
method: let M := supΩ̄ u, and assume for sake of contradiction M ≥ 0. Break into cases based
on the sign of M.

d. [My extension] Now suppose u ∈ C2(Ω) ∩ C1(Ω̄) solves
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{
4u = u3eu, x ∈ Ω

u = 0, x ∈ ∂Ω.

By modifying one of the methods from parts a-c, show that once again the zero function is the
only solution.

e. [My extension] Here the geometry of Ω comes into play. Let u ∈ C2(B(0, 1))∩C0(∂B(0, 1))
solve {

4u = u3, x ∈ B(0, 1)

u = ex1 , x ∈ ∂B(0, 1).

Show that |u|≤ e on all of B(0, 1).

9.2. Problem 2. Let w ∈ C1(Ω) ∩ C0(Ω̄) and define the energy

E[w] :=
1

2

ˆ
Ω
|5w|2dx−

ˆ
∂Ω
hwdS

a. Show that if u ∈ C1(Ω)∩C0(Ω̄) solves the Robin Boundary Problem for Laplace’s Equation,{
4u = 0, x ∈ Ω
∂u
∂n + α(x)u = h(x), x ∈ ∂Ω

then E[u] ≤ E[w]. We say that u minimizes the energy functional E[·].
b. Show that if u solves the aforementioned Boundary Value Problem then E[w] ≥ E[u] for any

w ∈ C1(Ω) ∩ C0(Ω̄).

9.3. Problem 3. Let f, c ∈ C0(Ω̄) and g ∈ C0(∂Ω), and let c be positive in Ω̄. Prove there is at
most one C2 solution to the PDE{

−ex2+5x+1uxx − ey
2+5y+1uyy + c(x, y)u = f, (x, y) ∈ Ω

u = g, (x, y) ∈ ∂Ω

9.4. Problem 4. Let Ω ⊂ Rn be a bounded domain and let u, h ∈ C2(Ω)∩C0(Ω̄) such that u > 0
in Ω and a > 0 is a constant, where{

4u = 1
u + u5, x ∈ Ω

u = a, x ∈ ∂Ω{
4h = 1, x ∈ Ω

h = −a
2 , x ∈ ∂Ω

a. Prove that u ≤ a in Ω.
b. Prove that h ≤ −u

2 in Ω.
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9.5. Problem 5. a. [UTK PDE Prelim Exam August 2015 Problem 2] Let Ω ⊂ R2 be open and
bounded, and suppose g ∈ C0(∂Ω). Show there exists at most one solution u ∈ C2(Ω) ∩ C0(Ω̄)
satisfying {

4u+ ux − uy = u3, x ∈ Ω

u = g, x ∈ ∂Ω

Use a maximum principle.
b. If we further assume that ∂Ω is a C1 boundary, we can also show uniqueness using an energy

method. Now show the energy approach.

9.6. Problem 6. Let Ω be a bounded domain in Rn, let c be a continuous function in Ω, and
u ∈ C2(Ω) ∩ C(Ω̄).

a. [A theorem in Han] Prove that if c ≤ 0 and4u+ cu ≥ 0 in Ω, then maxΩ̄ u ≤ max∂Ω u
+.

b. Prove that if c ≥ 0 and4u+ cu2 > 0 in Ω then maxΩ̄ u ≤ max∂Ω u
+.

c. Using the same conditions as part b, can we also deduce maxΩ̄ u ≤ max∂Ω u?
d. Suppose that c ≤ 0, u ≥ 0, and4u+ cu2 ≥ 0 in Ω. Show then that maxΩ̄ u ≤ max∂Ω u

+.

9.7. Problem 7. Suppose u ∈ C2(B(0, 1)) ∩C0(B(0, 1)) such that4u+ cu ≥ 0 in B(0, 1), for
a continuous function c ≤ 0 in B(0, 1). Assume ∃w ∈ B(0, 1) such that u(w) > 0.

a. Prove that ∃∂B(0, 1) such that u(x0) > 0.
b. Suppose ∃0 < r < 1 such that u ≤ 0 on B(0, 1) \B(0, r). Show then that ∂u∂v (x0) > 0.

9.8. Problem 8. Suppose Ω ⊂ Rn is a bounded C1 domain that satisfies the interior sphere con-
dition. Suppose u ∈ C2(Ω) ∩ C0(Ω̄) satisfies u ≥ 1 in Ω, ∂u∂n = 0 on ∂Ω, and4u+ u3 − u4 ≥ 0
in Ω. Prove that for each x0 ∈ ∂Ω, there exists x1 ∈ Ω such that u(x0) ≤ u(x1). Deduce that

sup
∂Ω

u = sup
Ω̄

u

9.9. Problem 9. [UTK PDE Prelim August 2017 Problem 3] Let n ≥ 2 and let Ω ⊂ Rn be a
bounded domain with aC∞−smooth boundary. Suppose p, q are nonnegative continuous functions
on Ω such that p(x) + q(x) > 0 (strict inequality) for all x ∈ Ω. Find all functions u ∈ C2(Ω̄)
satisfying {

4u = pu3 + qu, x ∈ Ω
∂u
∂n = 0, x ∈ ∂Ω

Try both methods.
a. Use an energy method.
b. Use a maximum principle-type argument along with the Hopf Lemma (proceed by contradic-

tion).
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9.10. Problem 10. [Tuoc Phan] Let n ≥ 2 and let Ω ⊂ Rn be a bounded domain with aC∞−smooth
boundary. Suppose p, q are nonnegative continuous functions on Ω such that p(x)+q(x) > 0 (strict
inequality) for all x ∈ Ω. Suppose a(x) > 0 and b(x) ≥ 0 on ∂Ω are continuous as well. Find all
functions u ∈ C2(Ω̄) satisfying{

4u = pu3 + qu, x ∈ Ω

a(x)∂u∂n + b(x)u = 0, x ∈ ∂Ω

Try both methods.
a. Use an energy method.
b. Use a maximum principle-type argument along with the Hopf Lemma (proceed by contradic-

tion).
c. Identity a slightly weaker condition on a and b such that the argument from part b will still

work.

9.11. Problem 11. Let Ω := {x ∈ R3 : 0 < |x|< 1} and S := {x ∈ R3, |x|= 1}. Suppose
u ∈ C2(Ω) ∩ C0(Ω ∪ S) satisfies {

4u ≥ 0, x ∈ Ω

u = 0, x ∈ S
with u bounded on Ω.
a. [UTK PDE Prelim Fall 2012 Problem 2] Prove that u ≤ 0 on Ω by using the auxiliary function

v(x) = u(x)− ε
(

1

|x|
− 1

)
for ε > 0.
b. [My variant] I then tried looking for other auxiliary functions that might give a better bound,

for instance I tried using

v(x) = u(x)− ε
(

1

|x|2
− 1

)
However, I realized that under the conditions given in the problem, there was no sense in trying

to find a better bound. Why is this the case?

10. ENTIRE FUNCTIONS

10.1. Problem 1. a. Suppose f is an entire function with a real part that never vanishes. Prove
that f must be constant.

b. [UTK Analysis Prelim January 2006 Problem 4, UTK Analysis Prelim August 2003 Problem
2] Let f be an entire function which satisfies |f(z)|≤ 1 +

√
|z| for all z ∈ C. Show that f is a

constant.

10.2. Problem 2. Give two justifications for why f(z) = sin(<z) is not entire:
a. One using Cauchy-Riemann Equations
b. One using Liouville’s Theorem
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10.3. Problem 3. a. [UTK Analysis Prelim August 2015 Problem 1] A complex valued function
f on C is called locally M -Lipschitz for some M > 0 if ∀z ∈ C there exists ε > 0 so that
|f(w) − f(z)|< M |z − w| for all |w − z|< ε. Given M > 0 state and prove a description of all
entire functions f which are locally M -Lipschitz on C.

b. [My variant] Suppose instead f is entire and that for any z ∈ C, there exists ε > 0 such that
whenever |w − z|< ε,

|f(z)2 − f(w)2|< M |w − z|
Prove that either:
i) f must be a constant
ii) There exist α, β ∈ C and a g entire and nonzero where f = αg and f ′ = β

g

iii) There exist α, β ∈ C and a g entire and nonzero where f ′ = αg and f = β
g

c. Are conditions ii) and iii) equivalent to each other?

10.4. Problem 4. a. Prove the Casorati-Weierstrass Theorem: let f be holomorphic in a punctured
disc in Dr(z0) \ {z0} with an essential singularity at z0. Then f(Dr(z0) \ z0) is dense in C.

b. Provide an alternative proof if we replace the punctured disc with the punctured plane C\{z0}.

11. FRACTIONAL LINEAR TRANSFORMATIONS

11.1. Problem 1. [Carl Sundberg] Let f ∈ H(D), f : D → D be invertible. Then there exists an
α ∈ D, λ ∈ ∂D such that

f(z) = λ
z − α
1− ᾱz

12. FUBINI-TONELLI AND PRODUCT MEASURES

12.1. Problem 1. [Remus Nicoara] Calculate
ˆ 1

0

ˆ 1

y
x−

3
2 cos

(πy
2x

)
dxdy

12.2. Problem 2. [Remus Nicoara] Let f(x, y) := e−xy − 2e−2xy. Explain why the following
observation does not contradict Fubini’s Theorem:

ˆ 1

0

ˆ ∞
1

f(x, y)dxdy 6=
ˆ ∞

1

ˆ 1

0
f(x, y)dydx

12.3. Problem 3. a. [Remus Nicoara] Let f : R → [0,∞) be Lebesgue measurable. Let Et :=
{x ∈ R, f(x) ≥ t} for any t ≥ 0. Show that

ˆ
R
f(x)dx =

ˆ ∞
0

m(Et)dt

b. [Remus Nicoara] Let A,B ⊂ R be Lebesgue measurable. Let H(x) := m((A− x) ∩B) for
all x ∈ R. Show that H is a measurable function and that
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ˆ
R
H(x)dx = m(A)m(B)

12.4. Problem 4. [Remus Nicoara] Let f(x, y) := x2−y2
(x2+y2)2

when (x, y) 6= (0, 0) and f(0, 0) = 0.
Show that

ˆ 1

0

ˆ 1

0
f(x, y)dydx 6=

ˆ 1

0

ˆ 1

0
f(x, y)dxdy

and argue why this does not contradict Fubini-Tonelli.

12.5. Problem 5. a. [Remus Nicoara] Let f, g be integrable functions on a measure space (X,M, µ)
where X is σ-finite. For each t ∈ R let

Ft := {x, f(x) > t}
Gt := {x, g(x) > t}

Show that
ˆ
R
µ(Ft 4Gt)dt =

ˆ
X
|f − g|dµ

b. [Remus Nicoara] Show that the claim from part a still holds even if X is not σ-finite.

12.6. Problem 6. Carefully and rigorously prove that

ˆ 1

0

ˆ 1

0
xy2 − x2ydxdy = 0

12.7. Problem 7. Suppose f : [0, 1] × [0, 1] → R is m × m-measurable and g : [0, 1] → R is
m-measurable. Suppose g ∈ L1(0, 1) and supy∈(0,1)||f(·, y)||L2(0,1)<∞. Prove that

ˆ 1

0

ˆ 1

0
f(x, y)g(y)dydx =

ˆ 1

0
g(y)

ˆ 1

0
f(x, y)dxdy

13. HYPERBOLIC PDE

13.1. Problem 1. a. [UTK PDE Prelim August 2012 Problem 4] Let a, b ∈ R, T > 0. Suppose
φ, ψ ∈ C∞(Ω̄), u ∈ C2(ΩT ) ∩ C0(Ω̄T ) solves

utt −4u+ aux1 + bu = 0, (x, t) ∈ ΩT

u = 0, (x, t) ∈ ∂Ω× (0, T ]

u = φ, (x, t) ∈ Ω× {t = 0}
ut = ψ, (x, t) ∈ Ω× {t = 0}

.

Let E(t) := 1
2

´
Ω u

2
t + |5u|2dx. Prove ∃k > 0 such that E(t) ≤ E(0)ekt for all t ∈ [0, T ].

b. [My extension] Using part a, derive the estimate



18 JOSHUA M. SIKTAR

||ut||2L2(ΩT )+||5u||
2
L2(ΩT )≤

1

k
(ekT − 1)(||ψ||2L2(Ω)+||5φ||

2
L2(Ω)),

and use this to conclude a continuous dependence statement on the initial data of the PDE.

13.2. Problem 2. Consider the following BVP for the wave equation. Let u ∈ C2(Rn×(0,∞))∩
C0(Rn × [0,∞)) solve 

utt = 4u, (x, t) ∈ Rn × {t = 0}
u(x, 0) = f(x), x ∈ Rn

ut(x, 0) = g(x), x ∈ Rn

and suppose that f : Rn → R is harmonic, g : Rn → R is smooth.
a. Suppose first that n = 1. Prove that there exist constants c1, c2 ∈ R such that

|u(x, t)|≤ |2c1x+ c2|+
1

2

ˆ x+t

x−t
|g(s)|ds.

for any x ∈ R, t > 0.
b. Still supposing that n = 1, prove there exists c1 ∈ R so the following hold for x ∈ R, t > 0:

|ux(x, t)|≤ |c1|+
1

2
|g(x+ t)|+1

2
|g(x− t)|

|ut(x, t)|≤
1

2
|g(x+ t)|+1

2
|g(x− t)|

c. Suppose now that n = 2. Prove that for any 0 < t < 1, x ∈ R2,

|u(x, t)|≤ 1

2πt
3
2

ˆ
B(x,t)

|f(y)|
|y − x|

dy +
1

2π
√
t

ˆ
B(x,t)

|g(y)|
|y − x|

dy =
1

2π
√
t

ˆ
B(x,t)

|5f(y)|dy.

d. Still supposing that n = 2, prove that for any t > 0, x ∈ R2,

|u(x, t)|≤ 1

2πt
3
2

ˆ
B(x,t)

|f(y)|
|y − x|

1
2

dy+
1

2πt
1
2

ˆ
B(x,t)

|g(y)|
|y − x|

1
2

dy+
1

4πt
3
2

ˆ
B(x,t)

|5f(y)|2dy+
1

4πt
3
2

ˆ
B(x,t)

|y−x|dy.

e. [UTK PDE Prelim August 2016 Problem 6] Now suppose that n = 3. Prove that for any
0 < t < 1, x ∈ R3,

|u(x, t)|≤ |f(x)|+ sup
y∈B(0,1)

|g(y)|.

f. [UTK PDE Prelim August 2016 Problem 6] Now suppose that n = 3. Prove that for any
t ≥ 1, x ∈ R3,

|u(x, t)|≤ |f(x)|+ 3

4πt2

ˆ
B(x,t)

|g(y)|dy +
1

4πt

ˆ
B(x,t)

|5g(y)|dy.
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13.3. Problem 3. Let n ≥ 2,Ω ⊂ Rn be a C∞ bounded domain, T > 0 be fixed, h be a vector
h := (h1, . . . , hn) such that hj ∈ C(Ω̄ × [0, T ]). Let f, g : Ω̄ → R be C2(Ω) ∩ C0(Ω̄) functions
and suppose u ∈ C2(Ω× (0, T )) solves

utt = 4u+5u · h, x ∈ Ω, 0 < t < T

u = 0, x ∈ ∂Ω, 0 ≤ t ≤ t
u(x, 0) = f(x), x ∈ Ω

ut(x, 0) = g(x), x ∈ Ω

.

Define the energy

E(t) :=
1

2

ˆ
Ω
|5u|2+u2

tdx

and define M := supΩ×[0,T ]|h| (notice this quantity is finite).
a. Prove that

E′(t) ≤ M

2

ˆ
Ω
|5u|2+u2

tdx+
1

2

ˆ
∂Ω

∣∣∣∣∂u∂n
∣∣∣∣2 + |ut|2dS.

b. Prove that

E(t) ≤ M

2

ˆ
Ω×[0,T ]

|5u|2+u2
tdxdt+

1

2

ˆ
∂Ω×[0,T ]

∣∣∣∣∂u∂n
∣∣∣∣2 + |ut|2dSdt+

1

2

ˆ
Ω
|5f |2+g2dx.

13.4. Problem 4. Let g ∈ Lp(R3× (0,∞)) for some 1 < p <∞ and let u ∈ C2(R3× (0,∞))∩
C0(R3 × [0,∞)) solve 

utt −4u = g(x, t), x ∈ R3, t > 0

u(x, 0) = 0, x ∈ R3

ut(x, 0) = 0, x ∈ R3

a. Show that for any x ∈ R3, t > 0, we have the estimate

|u(x, t)|≤
||g||Lp(R3×(0,∞))t

2− 2
p

(4π)
1
p

(
2− 2

p

) .

b. If you replicate the same procedure in part a for p = 1, what happens?

13.5. Problem 5. a. Show that

u(x, t) =
1

2π

ˆ t

0

ˆ
B(x,t−s)

es

((t− s)2 − |y − x|2)
1
2

dyds

solves the PDE



20 JOSHUA M. SIKTAR


utt(x, t)−4u(x, t) = et, (x, t) ∈ R2 × {t = 0}
u(x, 0) = 0, (x, t) ∈ R2 × {t = 0}
ut(x, 0) = 0, (x, t) ∈ R2 × {t = 0}

b. Show that

u(x, t) =
1

2π

ˆ t

0

ˆ
B(x,t−s)

es

((t− s)2 − |y − x|2)
1
2

dyds+
1

2π

ˆ
B(x,t)

|y|2

(t2 − |y − x|2)
1
2

dy

solves the PDE 
utt(x, t)−4u(x, t) = et, (x, t) ∈ R2 × {t = 0}
u(x, 0) = 0, (x, t) ∈ R2 × {t = 0}
ut(x, 0) = |x|2, (x, t) ∈ R2 × {t = 0}

13.6. Problem 6. Let u be a C2 solution to

utt −4u = u2

on Rn × (0,∞). We define, for a fixed (x0, t0) ∈ Rn × (0,∞), the energy

E(t) :=
1

2

ˆ
B(x0,t0−t)

u2
t + |5u|2dx

Show that for any 0 < t < t0,

E′(t) ≤ 1

2

ˆ
B(x0,t0−t)

u2
t + u4dx

13.7. Problem 7. Suppose u is a C2 solution to

utt −4u = 0

on R3× (0,∞) where u(x, 0) = f(x), ut(x, 0) = g(x) are continuous initial data on R3, where
f is also of class C1 on R3.

a. Prove for 0 < t < 1,

u(0, t)2 ≤ 3

16π2t4

ˆ
∂B(0,t)

f(y)2 + g(y)2 + |5f(y)|2dS(y)

b. Prove for t ≥ 1,

u(0, t)2 ≤ 1

16π2t2

ˆ
∂B(0,t)

(f(y) + g(y) +5f(y) · y)2dS(y)
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13.8. Problem 8. Let a,R > 0, consider a solution u ∈ C1((0, R)× (0,∞)) to
ut + aux = f(x, t), 0 < x < R, t > 0

u(0, t) = 0, t > 0

u(x, 0) = 0, 0 < x < R

a. [UTK PDE Prelim Fall 2019 Problem 2] Prove for t > 0,

ˆ R

0
u2(x, t)dx ≤ et

ˆ t

0

ˆ R

0
f2(x, s)dxds

b. [My variant] Also prove for t > 0,

d

dt

ˆ R

0
u4(x, t)dx ≤ 2

ˆ R

0
f(x, t)2 + u(x, t)6dx

13.9. Problem 9. Let a,R > 0, consider a solution u ∈ C1((0, R)× (0,∞)) to
utt + auxx = f(x, t), 0 < x < R, t > 0

u(0, t) = u(R, t) = 0, t > 0

u(x, 0) = 0, 0 < x < R

Prove that for any t > 0,

d

dt

ˆ R

0
uutdx ≤

1

2

ˆ R

0
u2(x, t) + f2(x, t)dx

13.10. Problem 10. Consider the initial-value problem for this nonlinear wave equation:
utt −4u+ u5 = 0, (x, t) ∈ Rn × (0,∞)

u(x, 0) = a0(x), x ∈ Rn

ut(x, 0) = a1(x) x ∈ Rn

Arbitrary scalings for solutions to hyperbolic PDEs come in the form

uλ(x, t) = λβu(λx, λt)

for λ > 0. There exists a value of β for which u solving the PDE implies uλ(x, t) solves the
same PDE (with scaled initial values) for all λ > 0. Find the value of β.

13.11. Problem 11. Suppose u0 ∈ C∞C (Rn) and that u solves the Cauchy problem for the wave
equation, {

utt −4u = 0, (x, t) ∈ Rn × (0,∞)

u(x, 0) = u0(x), x ∈ Rn

Let p, q ∈ (1,∞) and consider the inequality
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||u(·, t)||Lp(Rn)≤
N

tα
||u0||Lq(Rn)

for t > 0. Let N,α both be positive and depending only on n, p, and q. Suppose N is known
and any solution to the given PDE satisfies this inequality with the corresponding initial data. Find
α in terms of n, p, and q.

13.12. Problem 12. [This is a generalization of UTK PDE Prelim August 2019 Problem 8] Let
u ∈ C2(Rn × [0,∞)) solve

utt = 4u
in Rn×(0,∞). Suppose r(t) is aC1((0,∞)) function that is always positive. Define the energy

E(t) :=
1

2

ˆ
B(0,r(t))

|ut(x, t)|2+|5u(x, t)|2dx

a. Prove that

E′(t) =

ˆ
B(0,r(t)

ut(x, t)utt(x, t)+
n∑
i=1

uxi(x, t)uxit(x, t)dx+
1

2
r′(t)+

ˆ
∂B(0,r(t))

u2
t (x, t)+|5u(x, t)|2dS(x).

b. Suppose that r′(t) + 1 ≤ 0 for all t. Prove that E′(t) ≤ 0 for all t > 0.

13.13. Problem 13. a. [Henry Simpson] Suppose u ∈ C2(R3 × (0,∞)) solves{
utt −4u = 0, (x, t) ∈ R3 × (0,∞)

u(x, 0) = f(x), x ∈ R3ut(x, 0) = g(x), x ∈ R3

where f, g ∈ C0(R3). Define

Mf (x, t) =

 
∂B(x,t)

f(y)dS(y)

Mg(x, t) =

 
∂B(x,t)

g(y)dS(y)

and show that u(x, t) = ∂
∂t(tMf (x, t)) + tMg(x, t) when x ∈ R3, t > 0.

b. [My extension] Use part a to obtain an analogous formula for ut(x, t) when x ∈ R3, t > 0.

13.14. Problem 14. Let f ∈ C1(R) where f ′ ∈ L1(R) and f(0) = 0. Suppose φ, ψ ∈ C2(Ω̄)
and u ∈ C2(Ω̄T ) solves 

utt −4u = f(u), (x, t) ∈ ΩT

u(x, 0) = φ(x), x ∈ Ω

ut(x, 0) = ψ(x), x ∈ Ω

u = 1, ∂Ω× (0, T ]
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Define the energy

E(t) :=

ˆ
Ω
u2
t + |5u|2+u2dx

Show that

E′(t) ≤
||f ′||L1(R)+1

2
E(t)

for each t.

13.15. Problem 15. Let Ω ⊂ Rn be open and bounded, T > 0, ΩT := Ω× (0, T ), and let u solve
the PDE 

utt −4u+ u5 = f(x, t), (x, t) ∈ ΩT

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

ut(x, t) = ψ, u(x, 0) = φ, (x, t) ∈ Ω× {t = 0}
where u, f ∈ C∞(ΩT ), ψ, φ ∈ C∞(Ω). Define the energy

E(t) :=

ˆ
Ω

1

2
u2
t +

1

2
|5u|2+

1

6
u6dx

a. Prove that

E(t) = E(0) +

ˆ
ΩT

futdx

b. Prove the continuous dependence inequality

1

4
||ut||2L2(ΩT )+

1

2
||5u||2L2(ΩT )+

1

6
||u||6L6(ΩT )≤

T

2
||ψ||2L2(ΩT )+

T

2
||5φ||2L2(ΩT )+

T

6
||φ||6L6(ΩT )+T

2||f ||2L2(ΩT )

c. Suppose |f |≤ 1 on ΩT . Prove that for 0 < t < T ,

E′(t) ≤
(

3

2

ˆ t

0
||f ||L1(Ω)||ut||L2(Ω)(||ft||L2(Ω)+||ut||L2(Ω)+||f ||L2(Ω)+||utt||L2(Ω)dt

) 1
3

13.16. Problem 16. Let u(x, t) be a C2 compactly supported solution to
utt −4u = 0

u(x, 0) = 0

ut(x, 0) = g(x)

on R3 × (0,∞). Suppose
´
R3 g

2dx <∞
a. [UTK PDE Prelim January 2015 Problem 6] Prove that

ˆ ∞
0

u(0, t)2dx ≤ 1

4π

ˆ
R3

g(x)2dx
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b. [My variant] Prove this alternative bound for the same quantity:

ˆ ∞
0

u(0, t)2dx ≤
ˆ ∞

0

ˆ t

0

ˆ
∂B(0,s)

2

πs
g2(y) +

1

8π2s
y · 5g(y)dS(y)

13.17. Problem 17. Extrapolate the statement and proof of the finite propagation speed for the
wave equation in Rn × (0,∞) on page 84 of [Ev] to conclude a similar result for the PDE

utt = 4u− u7

13.18. Problem 18. State the D’Alembert Formula for solution to wave equation in one dimen-
sion. Give an explicit example of initial data to indicate that in n = 1 the solution does not adhere
to the time decay behavior we see in higher dimensions.

13.19. Problem 19. Consider the following BVP for the wave equation. Let u ∈ C2(R3 ×
(0,∞)) ∩ C0(R3 × [0,∞)) solve

utt = 4u, (x, t) ∈ R3 × {t = 0}
u(x, 0) = f(x), x ∈ R3

ut(x, 0) = g(x), x ∈ R3

and suppose that f, g : Rn → R are smooth. Prove that

u(x, t) =
1

4π

ˆ
∂B(0,1)

f(x+ wt) + tg(x+ wt) + tw · 5f(x+ wt)dS(w)

and

ut(x, t) =
1

4π

ˆ
∂B(0,1)

w·5f(x+wt)+g(x+wt)+tw·5g(x+wt)+w·5f(x+wt)+tw·5ft(x+wt)dS(w)

for x ∈ R3, t > 0.

13.20. Problem 20. Suppose u ∈ C∞(Rn) solves

utt −4u+ u5 = 0

for t ≥ 0, and define the energy

E(t) :=

ˆ
Rn

1

2
u2
t +

1

2
|5u|2+

1

6
u6dx

a. Prove that the energy E(t) is constant in time.
b. Prove that for any t > 0,

ˆ
Rn

|5u|+|ut|+|u|3dx ≤
√

6α(n)E(0)(R+ t)
n
2
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13.21. Problem 21. Suppose u ∈ C2(R× [0,∞)) satisfies
utt = 4u, (x, t) ∈ R× {t = 0}
u(x, 0) = 0, x ∈ R
ut(x, 0) = f(x), x ∈ R

where f ∈ C∞(R) is compactly supported and f ′ ∈ L1(R). Show that for each x ∈ R, t > 0,

|u(x, t)|≤ x||f ′||L1(R)

13.22. Problem 22. The wave equation is traditionally written in the form

utt = c2 4 u

where c is a positive constant.
a. Explicitly state what scaling property the wave equation has.
b. Explain why this scaling property essentially allows us to assume without loss of generality

that c = 1.

14. INTEGRALS (COMPLEX-VALUED)

14.1. Problem 1. Using the Residue Theorem, calculate each integral for n ∈ N+:
a. [UTK Analysis Prelim January 2013 Problem 6]

´ 2π
0 cos2n(θ) dθ2π

b.
´ 2π

0 sin2n(θ) dθ2π
NOTE: there are inductive techniques that also solve these without using complex variables; you

may wish to check your work using these.

14.2. Problem 2. Let f : C → C be entire and let Gn be an increasing sequence of convex sets.
Prove that for any contour Γ in ∪∞n=1Gn, we have

´
Γ f(z)dz = 0.

14.3. Problem 3. a. Prove that if γ is a closed curve with 0, 1 /∈ int(γ) then

ˆ
γ

z2 + z + 1

z2(z − 1)2
dz = 0

b. Prove that for any k ∈ N+ there exists a closed curve γ with 0 ∈ int(γ) and 1 /∈ int(γ) such
that

ˆ
γ

z2 + z + 1

z2(z − 1)2
dz = 2πik

c. Prove that for any k ∈ N+ there exists a closed curve γ with 0, 1 ∈ int(γ) such that

ˆ
γ

z2 + z + 1

z2(z − 1)2
dz = 2πik
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14.4. Problem 4. If C denotes the unit circle oriented counterclockwise, calculate

1

2πi

ˆ
C

z5

2z6 − 1
dz

14.5. Problem 5. [UTK Analysis Prelim Fall 2006 Problem 1] Calculate

ˆ
|z|=1

e
1
z dz

Note: as the original problem statement did not specify, assume the integral is with a counter-
clockwise orientation around the boundary of the unit disc.

14.6. Problem 6. Describe under which set(s) of conditions Cauchy’s Theorem is a direct corol-
lary of the Argument Principle.

15. INTEGRALS AND LIMIT THEOREMS (LEBESGUE)

15.1. Problem 1. a. State the following theorems: Monotone Convergence Theorem, Fatou’s
Lemma, Dominated Convergence Theorem.

b. Use the Monotone Convergence Theorem to prove Fatou’s Lemma.
c. Use Fatou’s Lemma to prove Dominated Convergence Theorem.
d. Use the Dominated Convergence Theorem to prove the Monotone Convergence Theorem

without Fatou’s Lemma.
e. Use Fatou’s Lemma to prove the Monotone Convergence Theorem without the Dominated

Convergence Theorem.
f. Use the Dominated Convergence Theorem to prove Fatou’s Lemma without the Monotone

Convergence Theorem.

15.2. Problem 2. Suppose fn : X → R are negative, measurable, decreasing functions and fn →
f as n→∞ pointwise. Show that

lim
n→∞

ˆ
X
f2
ndµ =

ˆ
X
f2dµ.

15.3. Problem 3. Suppose fn, gn, f, g : X → R are measurable with fn → f and gn → g
uniformly on X and |fn|≤ |gn| for all n ∈ N+ and limn→∞

´
X gndµ =

´
X gdµ.

a. Prove that, using the Dominated Convergence Theorem,

lim
n→∞

ˆ
X
fn + gndµ =

ˆ
X
f + gdµ.

b. Using a different technique, prove the same claim but replacing the uniform convergence with
a.e. pointwise convergence.
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15.4. Problem 4. a. This problem appears in many textbooks and is worth working through at
least once. It is called the Riemann-Lebesgue Lemma1. Prove that

lim
n→∞

ˆ ∞
−∞

f(x) cos(nx)dx = 0

whenever f ∈ L1(R).
b. Now suppose f ∈ L2(R) and show

lim
n→∞

ˆ ∞
−∞

f(x)
√
|cos(nx)|dx = 0.

c. Now suppose f ′ ∈ L1(R) and show

lim
n→∞

n

ˆ ∞
−∞

f(x) sin(nx)dx = 0.

15.5. Problem 5. a. Let fn : X → R be measurable and nonnegative. Then show that

lim
n→∞

ˆ
sup
k≤n

fkdµ =

ˆ
limsupn→∞fndµ.

b. Now suppose fn : X → R is just measurable. Now show that

lim
n→∞

ˆ
sup
k≤n

f2
kdµ =

ˆ
limsupn→∞f

2
ndµ.

c. Finally let fn : [0, 1]→ R be measurable. Show that

ˆ 1

0
limsupn→∞f

2
ndµ ≥

(
lim
n→∞

ˆ 1

0
sup
k≤n

fkdµ

)2

.

15.6. Problem 6. Let fn : K → R where K is a compact subset of Rn. Suppose fn → 0
uniformly on K as n→∞. Show that

lim
n→∞

ˆ
K
fndµ = 0.

15.7. Problem 7. Evaluate the following limit-sum expressions:
a.

lim
n→∞

∞∑
m=1

n2m

n2m3 + 1

b.

lim
n→∞

∞∑
m=1

ln(n)4m

nm3 + 1

1there are several statements under this name but they claim very similar things
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c.

lim
n→∞

∞∑
m=1

nm+1

(n+ 2)((2n)m + 2)

15.8. Problem 8. This one is a variant of Problem 1 from the UTK Analysis Prelim January 2015.

Let fn(x) := e
sin

(
x2

n2

)
1+x and calculate the following limit for any parameter α > 1:

lim
n→∞

ˆ n

0
fαn dm.

15.9. Problem 9. The following is UTK Analysis Prelim January 2013 Problem 7.
Let fn, f be positive, integrable functions on the measure space (X,M, µ). Assume that fn →

f pointwise and
´
X fndµ→

´
X fdµ <∞. Show that

´
E fndµ→

´
E fdµ for all E ∈M

Even though this problem isn’t my own I want to highlight two separate ways to prove it. First,
there is the way which I think the problem was intended to be solved.

a. State and prove the Generalized Dominated Convergence Theorem.
b. Use that theorem to solve this problem.
Now I present a method which I believe works but does not make use of the

´
X fndµ→

´
X fdµ

assumption.
c. Let E ∈ M be fixed and let gn := χEfn for each n ∈ N+. Why must |gn|≤ 2|f | on X for

all n larger than some positive integer K?
d. Define h := 2f +

∑K
i=1 gi. Show that h ∈ L1(µ).

e. Use this function h and the regular Dominated Convergence Theorem to solve the problem.

15.10. Problem 10. Let h : R → R be a bounded function in L1(R) where lim|x|→0 h(x) = 0.
Prove that

lim
n→∞

h(nx) = 0

15.11. Problem 11. Let g : [0, 1]→ R be measurable and in L1(m).
a. [Remus Nicoara] If

´
(a,b) gdm = b − a for any 0 < a < b < 1, prove that g(x) = 1 a.e. on

[0, 1].
b. [Remus Nicoara] If

´
(a,b) gdm ≥ b − a for any 0 < a < b < 1, prove that g(x) ≥ 1 a.e. on

[0, 1].

15.12. Problem 12. [Remus Nicoara] Calculate, with proof, the limit limN→∞
´ N

0
N+cos2 x

N2+2N cosx2
dx.

15.13. Problem 13. [Remus Nicoara] Let µ be a Borel measure on R such that µ(R) = 1 and

lim
T→0

1− cos(Tx)

T 2
dµ(x) = 0

Show that µ({0}) = 1.
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15.14. Problem 14. [Remus Nicoara] Suppose {fn}∞n=1, f : X → R are measurable with µ(X) <
∞. Show the following are equivalent;

i) fn → f in measure.
ii)

´
X
|fn−f |

1+|fn−f |dµ→ 0 as n→∞.

15.15. Problem 15. [Remus Nicoara] Suppose fn → f in measure and {fn}∞n=1, f are all non-
negative and measurable. Prove

´
fdµ ≤ liminfn→∞.

15.16. Problem 16. [Remus Nicoara] Let f ∈ Lp([0,∞]) for some 1 ≤ p ≤ ∞. Then calculate

lim
N→∞

ˆ ∞
0

e−Nx
2
f(x)dx

15.17. Problem 17. a. [Remus Nicoara] Let µ, ν be positive and finite on (X,M). Show there
exists a function f that isM-measurable such that for any E ∈M,

ˆ
E

(1− f)dµ =

ˆ
E
fdν

and show 0 ≤ f ≤ 1 a.e. with respect to µ.
b. [My variant] Can this result be extended to the case where µ and ν are σ-finite?

15.18. Problem 18. [Remus Nicoara] For anyE Lebesgue measurable, let µ(E) :=
´
E

1
1+x2

dm(x).
a. Show that m << µ.
b. Find dm

dµ .

15.19. Problem 19. [Remus Nicoara] Let X = [0, 1]. Let c denote the counting measure on X .
LetM be the σ-algebra of Lebesgue measurable subsets of X . Show that m << c but there is no
f measurable with respect toM such that m(E) =

´
E fdc for all E ∈M. Explain why this does

not contradict the Radon-Nikodym Theorem.

15.20. Problem 20. [Remus Nicoara] Let m be Lebesgue measure on (0,∞). Let M be the
σ-algebra generated on X by intervals of the form

(
1

N+1 ,
1
N

]
for N ∈ N+. Let λ(E) :=´

E 2x2dm(x) for all E ∈ M. Does there exist a M-measurable function f on X such that
λ(E) =

´
E fdm for all E ∈M?

15.21. Problem 21. Suppose µ is a positive measure on a sigma-algebra A ⊂ 2R such that

µ(E) =

ˆ
E

sin(x)dm(x)

for each E ∈ A.
If µ is taken to be σ-finite, what restriction(s) must hold for A?
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16. INTERPOLATION INEQUALITIES

16.1. Problem 1. a. Find a relationship between p, q ∈ (1,∞) such that the scaling uλ(x) :=
u(λx), vλ(x) = v(λx) preserves the inequality

||uv||L1(Rn)≤ ||u||Lp(Rn)||v||Lq(Rn)

where u ∈ Lp(Rn), v ∈ Lq(Rn).
b. Find a relationship between p, q ∈ (1,∞) such that the scaling uλ(x) := u(λx), vλ(x) =

v(λx) preserves the inequality

||uv||L1(Rn)≤ ||5u||Lp(Rn)||v||Lq(Rn)

where u ∈ Lp(Rn) ∩ C∞C (Rn), v ∈ Lq(Rn).

16.2. Problem 2. Let p, q, r ∈ (0, 1). Find a relationship between p, q, r such that the scaling
fλ(x) := f(λx), gλ(x) := g(λx) preserves the inequality

||f ∗ g||Lr(R)≥ ||f ||Lp(R)||g||Lq(R)

Throughout assume all quantities in question are finite.

16.3. Problem 3. a. Prove that

ˆ 1

0

k∑
n=1

e
x2

n

(
2− x

n2

)
dx ≤

k∑
n=1

ˆ 1

0
e

2x2

n dx

ˆ 1

0

(
2− x

n2

)2
dx

for any k ∈ N+.
b. Why is this result meaningless if we send k →∞?

16.4. Problem 4. [Remus Nicoara] Let (X,M, µ) be a measure space. Let f ∈ Lp(X) ∩ Lq(X)
for 1 ≤ p < q <∞. Show that f ∈ Lr(X) for any p ≤ r ≤ q.

16.5. Problem 5. Let Ω ⊂ Rn be an open, bounded domain and let u be a harmonic function on
Ω. Then prove there exists constant C depending on n and Ω such that

||u||L∞(Ω)≤ C||5u||L2(Ω)

16.6. Problem 6. a. [UTK Analysis Prelim Fall 2018 Problem 4] Let (R,M,m) be the Lebesgue
measure space. If f ∈ L1(m), g ∈ Lp(m) for a p ∈ [1,∞), prove that

||f ∗ g||Lp(R)≤ ||f ||L1(R)||g||Lp(R)

b. [My variant] Show the claim of part a is still true if p =∞.

16.7. Problem 7. [Found on MathStackExchange] Suppose (X,M, σ) is a finite measure space
and f : X → R is measurable with f ∈ L∞(X) ∩ Lq(X) for some q > 1. Show that

lim
p→∞
||f ||Lp(X)= ||f ||L∞(X)
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17. LAPLACE’S EQUATION AND HARMONIC FUNCTIONS

17.1. Problem 1. a. Let u be harmonic in Rn with u ∈ L1(Rn) ∩ Lp(Rn) ∩ Lq(Rn) for some
p, q ∈ (1,∞) with 1

p + 1
q = 1. Prove that u is identically zero.

b. Let u be harmonic in Rn with u ∈ L1(Rn) ∩ Lp(Rn). Prove that u is identically zero.
c. [Han p. 144 Problem 4.5] Let u be harmonic in Rn with u ∈ Lp(Rn). Prove that u is

identically zero.
Note: Parts a and b are weaker versions of c, so a proof for c will work for a and b, but there are

alternative proofs that use the additional assumptions.

17.2. Problem 2. a. Let u ∈ C2(Ω) ∩ C1(Ω̄) and let α ∈ C0(∂Ω), where u solves{
4u = 0, x ∈ Ω
∂u
∂n + αu = 0, x ∈ ∂Ω

.

Prove that
´

Ω αu
2 ≤ 0.

b. If α is positive on a positive [Lebesgue] measure subset of Ω and zero everywhere else,
deduce that the only solution to the PDE in part a is the zero solution.

c. Let u ∈ C2(Ω) ∩ C1(Ω̄) and let α ∈ C0(∂Ω), where u solves{
4u = 0, x ∈ Ω
∂u
∂n + αu2 = 0, x ∈ ∂Ω

.

Again assume α ≥ 0 on ∂Ω. Prove that

ˆ
Ω
e−u

2
u

(
n∑
i=1

u2
xi

)
dx ≥ 0.

17.3. Problem 3. [UTK PDE Prelim August 2016 Problem 2] Suppose n ≥ 2, R > 0, B(0, R) ⊂
Rn, and u : B(0, R) → R satisfies u ∈ C(B(0, R)), u harmonic on B(0, R), and u ≥ 0 on
B(0, R).

a.2Prove that, for all x ∈ B(0, R),

(R− |x|)Rn−2

(R+ |x|n−1)
u(0) ≤ u(x) ≤ (R+ |x|)Rn−2

(R− |x|)n−1
u(0)

b. Prove also, for x ∈ B(0, R) and j = 1, 2, . . . , n,

|uxj (x)|≤ (2n+ 2)Rn−1

(R− |x|)n
u(0)

c. [My extension] Suppose that u possesses all the same properties as in parts a and b, except
that it may take negative values. Prove there exists MR > 0 depending on R (and u) such that

2I have also seen this problem in other places, and it is called the explicit form of Harnack’s Inequality. It was also a
homework problem in a partial differential equations course I took during my last semester of undergraduate study.
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(R− |x|)Rn−2

(R+ |x|n−1)
(u(0) +MR)−MR ≤ u(x) ≤ (R+ |x|)Rn−2

(R− |x|)n−1
(u(0) +MR)−MR

d. [My extension] Suppose that n ≥ 3 and that u ∈ C(B(0, R)) and u ≥ 0, but no longer
assume u is harmonic. Prove that if

(R|x|+(n− 2)(R+ |x|))(R− |x|) ≥ (R+ |x|)(n− 1)

then we obtain the same upper bound as in part a.
e. Use part a to prove Liouville’s Theorem: a function that is harmonic and bounded in all of

Rn is a constant function.

17.4. Problem 4. NOTE: This problem is attributed to Evans’ PDE book in various locations; I
have compiled a family of related problems into one place. They are collectively referred to as the
mean value property.

Let Ω ⊂ Rn be an open, bounded set, let B(x, r) be an open ball in Ω. Let u ∈ C2(Ω)∩C0(Ω̄).
a. Show that if u is harmonic, then u(x) =

ffl
∂B(x,r) u(y)dS(y).

b. Show that if u is subharmonic, then u(x) ≤
ffl
∂B(x,r) u(y)dS(y).

c. Show that if u is superharmonic, then u(x) ≥
ffl
∂B(x,r) u(y)dS(y).

17.5. Problem 5. a. Carefully state the mean-value property for harmonic functions.
b. Prove the boundary integral version of the mean-value property using Poisson’s Integral

Formula.
NOTE: This is not the standard proof covered in texts such as [Ev].

17.6. Problem 6. Let Ω ⊂ Rn be open and bounded, let {um}∞m=1 : Ω→ R be harmonic in Ω.
a. If the functions {um}∞m=1 are all nonnegative and the partial sums have a pointwise limit

u(x) =
∑∞

m=1 um(x), prove u is harmonic on Ω.
b. If the functions {um}∞m=1 are such that the sum u(x) =

∑∞
m=1 um(x) is absolutely conver-

gent, prove u is harmonic on Ω.

17.7. Problem 7. a. [UTK PDE Prelim Fall 2013 Problem 4] Let Ω ⊂ Rn be open and bounded.
Suppose {un}∞n=1 is a sequence of harmonic functions on Ω such that

ˆ
Ω
|un(x)− um(x)|2dx→ 0

as max{m,n} → ∞. Prove that un converges (in any sense you like) to a harmonic function in
Ω.

b. [Tuoc Phan] Show the above result continues to hold if we replace the 2 in the limiting
behavior with an exponent 1 ≤ p <∞.
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17.8. Problem 8. [Purdue PDE Prelim Fall 2005 Problem 3] Let Φ be the fundamental solution
of the Laplace Equation in Rn, and let f ∈ C∞0 (Rn). Then the convolution

u(x) = (Φ ∗ f)(x) =

ˆ
Rn

Φ(x− y)f(y)dy

solves−4u = f in Rn. Show that if f is radial and is supported inB(0, R) then u(x) = cΦ(x)
for all x ∈ Rn \B(0, R), where c =

´
Rn f(y)dy.

17.9. Problem 9. a. [Purdue PDE Prelim Fall 2014 Problem 1] Let u ∈ C2(Rn) be harmonic in
Rn. Prove that u is constant if there exists a constant C > 0 such that

ˆ
B(x,1)

|u(y)|dy ≤ C

for any x ∈ Rn.
b. [My variant] Let u ∈ C2(Rn) be harmonic in Rn. Prove that u is constant if there exists a

constant C > 0 such that

ˆ
∂B(x,1)

|u(y)|dy ≤ C

for any x ∈ Rn.
c. [My variant] Let u ∈ C(Rn) be nonnegative and subharmonic in Rn. Prove that u is bounded

if there exists a constant C > 0 such that

ˆ
∂B(x,1)

|u(y)|dy ≤ C

for any x ∈ Rn.

17.10. Problem 10. Let Ω ⊂ Rn be an open, bounded set that is supported in B(0, R). Let
G(x, y) be the Green’s Function for the Laplacian operator, let Φ denote the fundamental solu-
tion to Laplace’s Equation, and let h(x, y) be the corrector function associated with the Green’s
Function G. Suppose n ≥ 3. Prove the following estimates for any x, y ∈ Ω with x 6= y.

a. miny∈∂Ω
1

n(n−2)α(n)|x−y|n−2 ≤ h(x, y) ≤ maxy∈∂Ω
1

n(n−2)α(n)|x−y|n−2

b. h(x, y) ≥ 1
n(n−2)α(n)(2R)n−2

c. h(x, y) ≤ 1
n(n−2)α(n)||x|−|y|| .

17.11. Problem 11. Suppose u ∈ C2(Rn) is harmonic in Rn. Then prove for any r ∈ (0,∞),

ˆ
∂B(0,1)

w · 5u(rw)dS(w) = n

ˆ
B(0,1)

x · 5u(rx)dx
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18. Lp SPACES AND CONVOLUTIONS

18.1. Problem 1. a. Suppose f ∈ Lp(0, 1) for a 1 ≤ p ≤ ∞. Prove that f ∈ L1(0, 1).
b. Let 1 < p < q <∞. Find a function in Lp(R) that is not in Lq(R).
c. Let 1 < p < q <∞. Find a function in Lq(R) that is not in Lp(R).
d. Let 1 < p < q <∞. Prove that Lq((0, 1)) ⊂ Lp((0, 1)).

18.2. Problem 2. a. State and prove Chebychev’s Inequality.
b. Let (µ,A, X) be a finite measure space (in fact for simplicity assume µ(X) = 1). Prove that

for a measurable function f : X → R,

limsupp→∞µ({x ∈ X : |f(x)|≥ 1})
1
p ≤ ||f ||L∞(µ)

18.3. Problem 3. Suppose (X,A, µ) is a measure space where f ∈ L2(µ) and g ∈ L4(µ). Show
then that fg ∈ L1(µ) and

||fg||L1(µ)≤ ||f ||3L2(µ)||g||
4
L4(µ)

18.4. Problem 4. Suppose X is a Lebesgue measurable set where m(X) =∞.
a. [Remus Nicoara] Show that for given α1, α2, ... > 0 there are disjoint sets X1, X2, ... ⊂ X

such that m(Xi) = αi.
b. [Remus Nicoara] Show there exists an f Lebesgue measurable on X such that f ∈ Lp(X)

for all p ≥ 1 and f /∈ L∞(X).
c. [My variant] Fix a “critical" exponent 1 < p∗ <∞ and show that there exists an f ∈ Lp(X)

for all 1 ≤ p ≤ p∗ and f /∈ Lp∗(X).

18.5. Problem 5. [Remus Nicoara] Let (X,M, µ) be a measure space, 1 ≤ p ≤ ∞, and let
{fn}∞n=1 be a collection of measurable functions inLp(µ) where

∑∞
n=1||fn||Lp(µ)<∞ and

∑∞
n=1|fn|<

∞. Prove that under these conditions, Minkowski’s Inequality for finitely many of the {fn}∞n=1

functions can be extended to all of them.

18.6. Problem 6. [Remus Nicoara] Let (X,M, µ) be a finite measure space and M > 0 be such
that {fN}∞N=1, f, g ∈ L2(µ) such that fn → f almost everywhere and ||fN ||L2(µ)≤ M ∀N ≥ 1.
Show that

ˆ
X
fNgdµ→

ˆ
X
fgdµ

for N →∞.

19. LOGARITHMS AND ROOTS

19.1. Problem 1. Let θ ∈ [0, 2π) and define Gθ := C \ {reiθ, r ≥ 0}. Show there exists a branch
of the [complex] logarithm and a branch of the argument function in Gθ. Why can we not include
the origin in the set Gθ?
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20. MEASURES

20.1. Problem 1. a. [UTK Analysis Prelim January 2015 Problem 4a] LetM denote the Lebesgue
Measurable subsets of [0, 1]. Let µ be a positive measure on ([0, 1],M) such that µ({0}) = 0.
Define

f(x) := µ([0, x])

for any 0 ≤ x ≤ 1. Assume f is absolutely continuous on [0, 1]. Prove that µ << m.
b. Using part a, extend the claim itself to the case where µ is a signed measure.

20.2. Problem 2. Using the construction of the Lebesgue-Stieltjes measure, show that the 1-
dimensional Lebesgue measure of a countable subset of R is zero.

20.3. Problem 3. Consider a measure space (X,A, µ). We say that the space is σ-finite if:
i) There exist E1, E2, . . . ∈ A with µ(Ei) <∞ and ∪∞i=1Ei = X .
ii) There exist F1, F2, . . . ∈ A with µ(Fi) <∞ and Fi ↗ X .
Prove that these two definitions are equivalent.

20.4. Problem 4. Let µ, ν be finite measures on the measurable space (X,A). Suppose a sequence
of measurable functions {fn} converges to f in measure ν, and suppose µ << ν. Show that {fn}
converges to f in measure µ as well.

20.5. Problem 5. Let (X,A) be a measurable space and assume µ is a complex measure. That is,
it is a map µ : A → C that is bounded and possesses the following properties:

i) µ(A) = 0
ii) For A1, A2, . . . ∈ A disjoint,

∑∞
n=1 µ(An) = µ (

⋃∞
n=1An).

Now, suppose ν, ω : A → R are bounded functions such that

µ(A) = ν(A) + iω(A)

for each A ∈ A.
a. Prove that ν and ω are uniquely determined by this property.
b. Prove that ν and ω are real-valued, finite measures.
c. Define a notion of σ-finite for complex-valued measures that is analogous to the one for

real-valued measures. Then use said notion to generalize parts a and b.

20.6. Problem 6. Suppose A1, A2, ... are Lebesgue measurable.
a. [Remus Nicoara] If

∑∞
n=1m(An) < ∞, prove that almost all x belong to at most finitely

many of A1, A2, ...
b. [My extension] One can produce counterexamples to show that this no longer holds if∑∞
n=1m(An) = ∞. Find an especially “good" counterexample where no x belong to at most

finitely many of A1, A2, ...
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20.7. Problem 7. a. Prove that the Lebesgue measure m on R is σ-finite.
b. Prove that for any E Lebesgue measurable with m(E) =∞, there exist E1, E2, ... such that

m(Ei) <∞ and Ei ↗ E.
c. [Remus Nicoara] Let E be a Lebesgue measurable set with m(E) = 1. Prove for any

0 < t < 1, there is an F ⊂ E Lebesgue measurable with m(F ) = t. Note: it is easy to see this
works for any positive finite value of m(E) with the same argument.

d. [My extension] Generalize part c to the case where m(E) =∞. Prove your result.

20.8. Problem 8. For each part, either prove the claim is true or provide a counterexample.
a. Pointwise convergence implies convergence in measure. b. If fn is a sequence of measurable

functions converging in Lp to a function f on a set X , then for any two measurable subsets X1, X2

such thatX1∪X2 = X , fn will converge to f in Lp on bothX1 andX2. c. Pointwise convergence
on a finite measure space implies convergence in measure. d. Convergence in measure implies
pointwise convergence. e. Pointwise convergence implies convergence in Lp for any 1 ≤ p < ∞.
f. Pointwise convergence implies convergence in L∞. g. Convergence in Lp implies convergence
in measure.

20.9. Problem 9. [Remus Nicoara] Let X be a finite measure space, fN → f in measure. Show
then f2

N → f2 in measure also.

20.10. Problem 10. [Remus Nicoara] Let f, g ≥ 0 be measurable on [0, 1] with respect to Lebesgue
Measure, where

´ 1
0 fdm = 2,

´ 1
0 gdm = 1, and c > 4 with

´ 1
0 f

2dm ≤ c. Show that if
E = {x ∈ [0, 1], f(x) > g(x)}, then m(E) ≥ 1

c .

20.11. Problem 11. [Remus Nicoara] Characterize the class of positive measures µ and ν where
ν << µ and ν⊥µ.

20.12. Problem 12. [Remus Nicoara] Prove the following properties of Radon-Nikodym Deriva-
tives. Assume all measures are positive and σ-finite.

a. Let ν1 << µ and ν2 << µ. Then

d(ν1 + ν2)

dµ
=
dν1

dµ
+
dν2

dµ
b. Let η << ν << µ. Then

dη

dµ
=
dη

dν
· dν
dµ

c. Interpret part b in the special case where µ = η.

20.13. Problem 13. [Remus Nicoara] Let µ, ν ≥ 0 be finite measures on (X,M) such that ν <<
µ << ν. Let f := dν

d(µ+ν) . Show that 0 < f < 1 a.e. with respect to µ.

20.14. Problem 14. [Remus Nicoara] Show the following properties hold where ν1, ν2, µ are pos-
itive measures.

a. If ν1 << µ and ν2⊥µ, then ν1⊥ν2.
b. If ν1⊥µ and ν2⊥µ then ν1 + ν2⊥µ.
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20.15. Problem 15. [Remus Nicoara] Show that if ν, µ, η are all positive measures with ν << µ,
then

a. ν × η << µ× η
b. If also assuming ν⊥µ, then show (ν × η)⊥(µ× η).

20.16. Problem 16. [Remus Nicoara] Let {µn}∞n=1 be finite measures on (X,M) such that µ =∑∞
n=1 µn is also a finite measure. If ν⊥µn for all n, show that ν⊥µ.

21. NORMAL FAMILIES

21.1. Problem 1. a. [MathStackExchange] Define the set

{f : D→ C, f(z) =

∞∑
n=0

anz
n, |an|≤ n2}

and show it is a normal family.
b. Why does the argument used in part a fail if we extend the family f to a larger disc, say

B(0, 2)?

21.2. Problem 2. LetA := A(0, r1, r2) be an annulus in C centered at 0, with 0 < r1 < r2. Show
that

F := {f analytic, f : A→ C, |f(z)|≤ 1

|z|
, z ∈ A}

is a normal family.

21.3. Problem 3. [Carl Sundberg] Let G denote the upper half-plane in C. Let f be a function
such that f ∈ H(G), |f(z)|≤ 1 for all z ∈ G, with f(iz) → 0. Prove that f(z) → 0 non-
tangentially as z → 0. That is, show any sequence {zn}∞n=1 ⊂ G such that zn → 0 is such that
f(zn)→ 0 as n→∞.

21.4. Problem 4. [Carl Sundberg] Let G ⊂ C be an open domain and define

F := {f ∈ H(G), univalent, f(G) ⊂ D, f(z0) = 0}
where z0 ∈ G is fixed. Show that F is normal.

22. PARABOLIC PDE

22.1. Problem 1. Fix T > 0. Suppose φL, φR : (0, T ) → R and ψ : [0, 1] → R are smooth
functions. Prove that the following IBVP has at most one solution.

uxt − uxxx = 0, (x, t) ∈ (0, 1)× (0, T )

u(0, t) = φL(t), t ∈ (0, T )

u(1, t) = φR(t), t ∈ (0, T )

u(x, 0) = ψ(x), x ∈ (0, 1)

.
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22.2. Problem 2. Fix T > 0. Prove that the zero function is the only solution to this IBVP.
u3
t + u+ 1 = 0, (x, t) ∈ (0, 1)× (0, T )

u(0, t) = 0, t ∈ (0, T )

u(1, t) = 0, t ∈ (0, T )

u(x, 0) = 0, x ∈ (0, 1)

.

22.3. Problem 3. a. Let u ∈ C2(R× (0,∞)) solve ut − uxx = 0. Prove that the scaled solution
uλ(x, t) = u(λx, λ2t) also solves this PDE.

b. Let u ∈ C4(R × (0,∞)) solve utt − uxxxx = 0. Prove that the scaled solution uλ(x, t) =
u(λx, λ2t) also solves this PDE.

c. Let u ∈ C2(R×(0,∞)) solve ut−uxx = u. Show scaling the solution uλ(x, t) = u(λx, λ2t)
does not automatically guarantee that uλ solves the same PDE.

d. Let u ∈ C2(R× (0,∞)) solve ut−uxx = uut. For what algebraic relationship between α, β
is it guaranteed that uλ(x, t) = u(λαx, λβt) also solves the same PDE?

23. POWER SERIES AND LAURENT SERIES

23.1. Problem 1. a. [UTK Analysis Prelim August 2011 Problem 4] Prove that

∞∑
n=1

1

(z − n)2

defines an analytic function in C \ N.
b. [My extension] Prove that

∞∑
n=1

−2

(z − n)3

defines an analytic function in C \ N.

23.2. Problem 2. a. [UTK Analysis Prelim August 2012 Problem 2] Let f(z) = cos(2z)
log(1+3z) . Deter-

mine the nature of the singularity that f has at 0 and find its singular part at 0. Here are two ways
to try the problem. Do both.

i) Expand the numerator and denominator into power series.
ii) Use the complex version of L’Hopital’s Rule to determine the limiting behavior of f near the

singularity.
b. [UTK Analysis Prelim August 2012 Problem 2] Consider the Laurent series of f at 0. Deter-

mine the largest set where this series converges.
c. [My variant] Use part b to find an upper bound on the radius of convergences for the Laurent

series of

g(z) :=
sin(4z)

log(1 + 3z)
centered at 0.
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23.3. Problem 3. Let f(z) =
∑∞

n=0 anz
n be a power series convergent in B(0, 1), and let

{Mn}∞n=0 ⊂ C be a sequence of complex numbers such that
∑∞

n=0|Mn|<∞. If g(z) =
∑∞

n=0 anMnz
n,

prove the radius of convergence of this power series centered at 0 is at least 1.

23.4. Problem 4. a. Determine the radius of convergence from the Laurent Series

f(z) =
∞∑
n=0

n2

n2 + 1
zn +

1

log(3z + 2)5

centered at 0.
b. Determine the smallest α > 0 such that the radius of convergence of

g(z) =

∞∑
n=0

n2α

n2 + 1
zn +

1

log(3z + 2)5

is smaller than the radius of convergence of f .

24. SEPARATION OF VARIABLES

24.1. Problem 1. I was once trying to investigate solutions of the Korteweg-de-Vries (KdV) equa-
tion

ut + uux + uxxx = 0

by first looking at solutions to the Inviscid Burgers’ Equation

ut + uux = 0.

I realized that if uxxx = 0 for a solution to Inviscid Burgers’ Equation, then that function u also
solves the KdV Equation. As a result I tried looking for special separable solutions to this IBVP
for the Inviscid Burgers Equation

ut + uux = 0, (x, t) ∈ (0, π)× (0,∞)

u(0, t) = 0, t ∈ (0, T )

u(π, t) = 0, t ∈ (0, T )

u(x, 0) = u0(x), x ∈ (0, 1)

where u0 ∈ L2((0, π)). For this particular problem, consider separable solutions of the form

u(x, t) = a(t)(c1x
2 + c2x+ c3),

where a ∈ C1([0,∞)) and c1, c2, c3 ∈ R with c1 6= 0. By mimicking the classical separation of
variables technique, show that the only such solutions are constant functions.
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24.2. Problem 2. The beam equation in R× {t > 0} is

uxxxx + utt = 0

Use separation of variables to derive each of the following solutions to the PDE (no initial or
boundary data). For each solution, which eigenvalue identifies it?

u(x, t) = sin(2x) cos(4t)

u(x, t) = sin(2x) sin(4t)

u(x, t) = cos(2x) cos(4t)

u(x, t) = cos(2x) sin(4t)

24.3. Problem 3. Use separation of variables to show that for any eigenvalue λ ∈ R the function

u(x1, x2) = e−x1+x2(λ−1) sin(λx1)

is a solution to the nonlinear PDE

2u+ 2ux1 + 2ux2 + ux1x1 + ux2x2 = 0

in all of R2. Do not worry about initial or boundary data for this problem, hence we don’t need
to restrict eigenvalues (though we get a trivial solution if λ = 0).

24.4. Problem 4. [UTK PDE Prelim January 2018 Problem 6] Let Ω ⊂ Rn be a smooth bounded
domain, T > 0, and let a ∈ Rn be a vector. Suppose u ∈ C2(Ω̄× [0, T ]) solves

ut = 4u+ a · 5u+ u2, (x, t) ∈ Ω× (0, T ]

u = 0, (x, t) ∈ ∂Ω× (0, T ]

u = 0, (x, t) ∈ Ω× {t = 0}

Show that u ≥ 0 on Ω× (0, T ] in two ways:
a. Replicate the proof of the maximum principle for the heat equation
b. Let v = uet and form a PDE for v. Then use a maximum principle for parabolic PDE.
c. Now show that ut ≥ 0 on Ω× (0, T ].
d. [My variant] For which vectors a ∈ Rn is a solution to this PDE necessarily subharmonic?

25. RESIDUES

25.1. Problem 1. Let Ω := C \ [−1, 1] and let γ be a closed curve in Ω.
a. [UTK Analysis Prelim August 2011 Problem 6a] If f(z) = 2

z2−1
, show that

´
γ f(z)dz = 0.

b. [My extension] If f(z) = 2
(z+1)2(z−1)

, show that
´
γ f(z)dz = 0.
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26. SIGMA ALGEBRAS AND SET THEORY

26.1. Problem 1. a. Let A1,A2 be algebras on a set X . Show that A1 ∩ A2 is an algebra.
b. Let A1,A2 be σ-algebras on a set X . Show that A1 ∩ A2 is a σ-algebra.
c. [MATH 545 Fall 2019 Homework problem] Find A1,A2 σ-algebras on a set X such that

A1 ∪ A2 is NOT a σ-algebra on X .
d. Let A1,A2 be σ-algebras on a set X . Show that the symmetric difference of A1 and A2 will

NEVER be a σ-algebra.
e. Show that the collection C := {(−∞, b) : b ∈ R} generates the Borel σ-algebra B on R.

26.2. Problem 2. a. Suppose {Mi}∞i=1 is a collection of monotone classes on a set X . Prove that
M := ∩∞i=1Mi is also a monotone class on X .

b. Suppose {Mi}Ni=1 is a finite collection of monotone classes on a set X . Prove that M :=
∪Ni=1Mi is also a monotone class on X .

c. Prove by means of a counterexample that the claim in part b no longer holds if the union is
countably infinite.

26.3. Problem 3. a. Let A ⊂ [0, 1] be Borel measurable. Then show for any ε > 0 there exists a
countable collection of disjoint open intervalsHi := (ci, di) for whichm (∪∞i=1Hi \A) < ε. What
is limi→∞m(Hi)?

b. Let A ⊂ [0, 1] be Borel measurable. Show for any ε > 0 there exists U open and K compact
such that K ⊂ A ⊂ U and m(U \K) < ε.

26.4. Problem 4. Let (X,A) be a measurable space, and let A1, A2, . . . ∈ A. Show that if B is
the collection of x ∈ X belonging to infinitely many of A1, A2, . . . , then

B =
∞⋂
n=1

∞⋃
k=n

Ak

is in A.

26.5. Problem 5. [Remus Nicoara] Consider the collection of half-open intervals(
1

N + 1
,

1

N

]
for N ∈ N+. Explicitly state the σ-algebra generated by these sets.

27. SIMPLY CONNECTED DOMAINS

27.1. Problem 1. a. [This exercise comes from [Sar]] Let {Gn}∞n=1 be a decreasing sequence
of simply connected domains such that the interior of ∩∞n=1Gn is nonempty. Prove that every
connected component of the interior of ∩∞n=1Gn is simply connected.

b. Find a selection {Gn}∞n=1 a decreasing sequence of simply connected domains where∩∞n=1Gn
is a singleton and verify that singletons are simply connected.

27.2. Problem 2. Suppose G is a simply connected domain in C. Prove that for any θ ∈ [0, 2π],
H := eiθG is also simply connected.
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27.3. Problem 3. Let E denote the double quarter plane E := {<z > 0,=z > 0} ∪ {<z <
0,=z < 0}

a. Demonstrate that E is not simply connected.
b. Why is E not conformally equivalent to the unit disc D?

27.4. Problem 4. Suppose that G is an open, bounded domain in C such that D ⊂ G. Suppose f
is analytic in G. Then prove that there exist E,F : G → C analytic, and φ that analytically and
conformally maps G into D such that

d2

dz2
(E ◦ φ(z)) = φ′′(z)F (φ(z)) + (φ′(z))2f(φ(z))

for all z ∈ G.

28. HINTS: DERIVATIVE INEQUALITIES FOR HOLOMORPHIC FUNCTIONS AND THE
IDENTITY THEOREM

Problem 1: use the Cauchy Integral formula on a disc with large radius.
Problem 4a: use the Identity Theorem for holomorphic functions.
Problem 7a: break into cases: m1 = m2,m1 < m2,m1 > m2.
Problem 11: notice u(0) = v(0) and use the mean-value property for v.

Problem 12b: let φ(z) :=
1
2
−z

1− 1
2
z

. Juxtapose φ and f so you can apply Schwarz Lemma.

29. HINTS: DIFFERENTIATION IN THE LEBESGUE SENSE

Problem 2d: Notice that fg = 1
2 [(f + g)2 − f2 − g2].

30. HINTS: ELLIPTIC PDE

Problem 8: Write4u+ u3 − u4 as4u+ cu for a nonpositive continuous function c. Consider
carefully the conditions necessary to invoke the Hopf Lemma.

31. HINTS: HYPERBOLIC PDE

Problem 1: for part b, integrate the inequality derived in part a.
Problem 2c-d: first prove the bound t2 − |y − x|2≥ t|y − x|. In part b it then follows that

t2 − |y − x|2≥ t|y − x|2.
Problem 2f: the integral over the boundary and the y − x factor that arise inside the integrand

suggest using the Divergence Theorem, but you will need to rescale the vector y− x first to ensure
it’s of unit length.

Problem 4a: use Duhamel’s Formula to get a specific formula for u, and use that as the basis for
estimates. You’ll need a certain inequality to introduce the Lp norm of g.

Problem 12a: if we can make the domain of integration independent of time, we can differentiate
under the integral sign. How can we make the domain of integration independent of time?

Problem 15c: find a formula for E′′(t) and then use to estimate 3E′(t)2E′′(t).
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Problem 16: for part a, use Kirchhoff’s Formula to get an integral formula with g, and then use
Cauchy-Schwarz to turn this into a g2; for part b, use some of the intermediate steps from part a to
get a formula for ut(0, t), then calculate a bound for 2u(0, t)ut(0, t).

32. HINTS: INTEGRALS (COMPLEX VALUED)

Problem 2: prove that all convex sets are simply connected as a first step.

33. HINTS: INTEGRALS AND LIMIT THEOREMS

Problem 4a: prove the claim first in the case where f is a step function.

34. HINTS: INTERPOLATION INEQUALITIES

Problem 1a, b: assume u and v satisfy the given inequality and use a series of change of variables
steps to get a similar inequality for uλ and vλ. The resulting inequality must be independent of λ.

Problem 5: Use Poincaré’s Inequality to estimate the greater side of the inequality from below.

35. HINTS: LAPLACE’S EQUATION AND HARMONIC FUNCTIONS

Problem 1: for parts a and b use Hölder’s Inequality. For part c use the Mean-Value Property.
Problem 2: For parts a and b, notice that

´
Ω u4udx = 0. For part c, notice

´
Ω f(u)4udx = 0

for any f ∈ C0(Ω). Pick a suitable f.
Problem 3: For part c, look to use part a. For part d, let T (r) = u(x) andU(r) = (r+|x|)rn−2

(r−|x|)n−1 u(0)

for a fixed x ∈ B(0, r) and 0 ≤ r ≤ R. Calculate T ′(r) and U ′(r).
Problem 6: For part a, look to use the Monotone Convergence Theorem. For part b, look to use

the Dominated Convergence Theorem.
Problem 10: take x to be fixed. What PDE and boundary condition does h satisfy when x is

fixed?

36. HINTS: PARABOLIC PDE

Problem 1: Let v be the difference of two solutions to the IBVP and let E(t) :=
´ 1

0 v
2
xx(x, t)dt.

37. HINTS: SEPARATION OF VARIABLES

Problem 3: Separation of variables is generally for linear PDEs but the one we’re given is
nonlinear. Consider using the substitution s(x1, x2) = ex1+x2u(x1, x2) to rewrite the PDE and the
proposed solution.

38. HINTS: SIGMA-ALGEBRAS AND SET THEORY

Problem 2c: consider your proof of part b and where it may break down in the infinite case.

39. HINTS: SIMPLY CONNECTED DOMAINS

Problem 4: show that the set G is simply connected. This will indicate what role the function φ
will play.
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