Introduction
 Main Result
 Lemmas
 Gaussianity Proof
 Future Work
 Acknowledgments

 Gaussian Behavior in Zeckendorf
 Decompositions Arising From Lattices

Joshua M. Siktar, Steven J. Miller Carnegie Mellon University, Williams College

2018 Young Mathematicians Conference

jsiktar@andrew.cmu.edu, sjm1@williams.edu

August 12, 2018

Introduction	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Overview						

- Introduction to Zeckendorf Decompositions
- Introduction to Main Result and Simulations
- Technical Lemmas
- Proof of Main Result
- Future Work

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
	• 0 000					
Zeckendorf Dec	ompositions					

Definition (Fibonacci Numbers)

The **Fibonacci Numbers** are a sequence defined recursively with $F_n = F_{n-1} + F_{n-2} \forall n \ge 2$ where $F_0 = 1$ and $F_1 = 1$.

Beginning of sequence:

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots$

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
	00000					
Zeckendorf Dec	ompositions					

Definition (Zeckendorf Decompositions)

A **Zeckendorf Decomposition** is a way to write a natural number as the sum of non-adjacent Fibonacci Numbers.

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf Decomposition.

Example (Greedy Algorithm):

• 335

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
	00000					
Zeckendorf Dec	ompositions					

Definition (Zeckendorf Decompositions)

A **Zeckendorf Decomposition** is a way to write a natural number as the sum of non-adjacent Fibonacci Numbers.

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf Decomposition.

Example (Greedy Algorithm):

- 335
- 335 = **233** + 102

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
	00000					
Zeckendorf Dec	ompositions					

Definition (Zeckendorf Decompositions)

A **Zeckendorf Decomposition** is a way to write a natural number as the sum of non-adjacent Fibonacci Numbers.

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf Decomposition.

Example (Greedy Algorithm):

- 335
- 335 = **233** + 102
- 335 = 233 + 89 + 13

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
	00000					
Simple Jump Path	าร					

A **simple jump path** is a path on the lattice grid where each movement on the lattice grid consists of at least one unit movement to the left and one unit movement downward.

• We count simple jump paths from (a, b) to (0, 0), where $a, b. \in \mathbb{N}^+$.

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
	00000					
Oliveral a law Dat						
Simple Jump Pati	ns					

A **simple jump path** is a path on the lattice grid where each movement on the lattice grid consists of at least one unit movement to the left and one unit movement downward.

- We count simple jump paths from (a, b) to (0, 0), where $a, b. \in \mathbb{N}^+$.
- Let the number of simple jump paths from (a, b) to (0, 0) be denoted s_{a,b}.

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
	00000					
Simple Jump Path	hs					

A **simple jump path** is a path on the lattice grid where each movement on the lattice grid consists of at least one unit movement to the left and one unit movement downward.

- We count simple jump paths from (a, b) to (0, 0), where $a, b \in \mathbb{N}^+$.
- Let the number of simple jump paths from (a, b) to (0, 0) be denoted s_{a,b}.
- Any simple jump path must include the use of (*a*, *b*) and (0, 0).

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
	00000					
Oliveral a la surra Dati						
Simple Jump Patr	าร					

A **simple jump path** is a path on the lattice grid where each movement on the lattice grid consists of at least one unit movement to the left and one unit movement downward.

- We count simple jump paths from (a, b) to (0, 0), where $a, b \in \mathbb{N}^+$.
- Let the number of simple jump paths from (a, b) to (0, 0) be denoted s_{a,b}.
- Any simple jump path must include the use of (*a*, *b*) and (0, 0).
- Let the number of simple jump paths from (a, b) to (0, 0) with k steps be denoted t_{a,b,k}.

Introduction o	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work o	Acknowledgments
Simple Jump Pa	ths					

⌈ 50					···]
28	48		• • •	•••	
14	24	40	• • •	• • •	
7	12	20	33	• • •	
3	5	9	17	30	
1	2	4	8	16	29

 Our goal is to enumerate how many paths are required for a linear search of a Zeckendorf decomposition from a certain starting point in the lattice.

Introduction O	Motivation ○○○○●	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Simple Jump Pat	ths					

• We construct a 2-dimensional sequence as a model of the Fibonacci Sequence in 2 dimensions.

Introduction O	Motivation ○○○○●	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Simple Jump Pat	ths					

- We construct a 2-dimensional sequence as a model of the Fibonacci Sequence in 2 dimensions.
- Long-term goal: generalize to even higher dimensions.

Introduction O	Motivation ○○○○●	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Simple Jump Pat	hs					

- We construct a 2-dimensional sequence as a model of the Fibonacci Sequence in 2 dimensions.
- Long-term goal: generalize to even higher dimensions.
- Set $z_{0,0} := 1$.

Introduction	Motivation ○○○○●	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Simple Jump Pat	ths					

- We construct a 2-dimensional sequence as a model of the Fibonacci Sequence in 2 dimensions.
- Long-term goal: generalize to even higher dimensions.
- Set $z_{0,0} := 1$.
- For each n ∈ N⁺, check if any downward/leftward path sums to the number. If not, add the number to the sequence so that it is added to the shortest unfilled diagonal moving from the bottom right to the top left.

Introduction O	Motivation ○○○○●	Main Result	Lemmas 000000	Gaussianity Proof	Future Work ○	Acknowledgments
Simple Jump Pat	ths					

- We construct a 2-dimensional sequence as a model of the Fibonacci Sequence in 2 dimensions.
- Long-term goal: generalize to even higher dimensions.
- Set $z_{0,0} := 1$.
- For each n ∈ N⁺, check if any downward/leftward path sums to the number. If not, add the number to the sequence so that it is added to the shortest unfilled diagonal moving from the bottom right to the top left.
- Each simple jump path on this lattice represents a Zeckendorf Decomposition.

General useful formulas for random variables:

- Gaussian (continuous): Random variable with density $(2\pi\sigma^2)^{-1/2} \exp(-(x-\mu)^2/2\sigma^2)$, mean μ , variance σ^2 .
- Central Limit Theorem: Let $X_1, ..., X_N$ be i.i.d. random variables with finite moments, mean μ and standard deviation σ . Also denote $\overline{X}_N := \frac{\sum_{i=1}^N X_i}{N}$. Then the distribution of $Z_N := \frac{\overline{X}_N \mu}{\sqrt{N}}$ converges to a Gaussian.

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
		00000				
Theorem Staten	nent					

Theorem (Gaussianity on a Square Lattice)

Let n be a positive integer, and consider the distribution of the number of summands among all simple jump paths with starting point (i, j) wjere $1 \le i, j \le n$, and each distribution represents a (not necessarily unique) decomposition of some positive number. This distribution converges to a Gaussian as $n \to \infty$.

• Represents $\{t_{10,10,k}\}_{k=1}^{10}$

 Special case: simple jump paths over a square lattice for n = 10, starting point (10, 10)

• Represents $\{t_{30,70,k}\}_{k=1}^{30}$

• Simple jump paths over a rectangular lattice with starting point (70, 30)

Introduction O	Motivation	Main Result ○○○○●	Lemmas 000000	Gaussianity Proof	Future Work ○	Acknowledgments				
Simulations and	Simulations and Explanation of Main Result Statement									

• Want to show convergence to a normal distribution as $n \to \infty$

- Want to show convergence to a normal distribution as $n \to \infty$
- The distribution will be taken over values of *k* that give legal jump paths for the given *n*.

Introduction O	Motivation	Main Result ○○○○●	Lemmas 000000	Gaussianity Proof	Future Work ○	Acknowledgments
Simulations and	Explanation of M	/lain Result Statem	ient			

- Want to show convergence to a normal distribution as $n \to \infty$
- The distribution will be taken over values of *k* that give legal jump paths for the given *n*.
- Simple jump paths: *k* ∈ {1, 2, ..., *n*}

Introduction O	Motivation 00000	Main Result	Lemmas ●00000	Gaussianity Proof	Future Work ○	Acknowledgments
Counting Jump F	Paths					

Lemma (Simple Jump Path Partition Lemma)

$$\forall a, b \in \mathbb{N}, \ s_{a,b} = \sum_{k=1}^{\min\{a,b\}} t_{a,b,k}.$$

Lemma (The Cookie Problem)

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

• Line up C + P - 1 identical cookies

Introduction O	Motivation 00000	Main Result	Lemmas ●00000	Gaussianity Proof	Future Work ○	Acknowledgments
Counting Jump F	Paths					

Lemma (Simple Jump Path Partition Lemma)

$$\forall a, b \in \mathbb{N}, \ s_{a,b} = \sum_{k=1}^{\min\{a,b\}} t_{a,b,k}.$$

Lemma (The Cookie Problem)

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

- Line up C + P 1 identical cookies
- Choose P 1 cookies to hide and place dividers in those positions

Introduction O	Motivation	Main Result	Lemmas o●oooo	Gaussianity Proof	Future Work	Acknowledgments
Counting Jump F	Paths					

Lemma (Enumerating Simple Jump Paths)

$$\forall a, b \in \mathbb{N}, k \in \min\{a, b\}, t_{a,b,k} = \binom{a-1}{k-1} \binom{b-1}{k-1}.$$

 First factor is number of ways to group a objects into k nonempty groups

Introduction O	Motivation	Main Result	Lemmas o●oooo	Gaussianity Proof	Future Work	Acknowledgments
Counting Jump F	Paths					

Lemma (Enumerating Simple Jump Paths)

$$\forall a, b \in \mathbb{N}, k \in \min\{a, b\}, t_{a,b,k} = \binom{a-1}{k-1} \binom{b-1}{k-1}.$$

- First factor is number of ways to group a objects into k nonempty groups
- Second factor is number of ways to group b objects into k nonempty groups

Introduction O	Motivation	Main Result	Lemmas o●oooo	Gaussianity Proof	Future Work	Acknowledgments
Counting Jump F	Paths					

Lemma (Enumerating Simple Jump Paths)

$$\forall a, b \in \mathbb{N}, k \in \min\{a, b\}, t_{a,b,k} = \binom{a-1}{k-1} \binom{b-1}{k-1}.$$

- First factor is number of ways to group a objects into k nonempty groups
- Second factor is number of ways to group b objects into k nonempty groups
- Groupings are independently determined, use Cookie Problem lemma

General useful formulas:

p(*x_k*): probability of event *x_k* occurring, one of finitely many values (events)

• Density function:
$$f_n(k+1) := \frac{t_{n+1,n+1,k+1}}{s_{n+1,n+1}} = \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

• Mean (discrete):
$$\mu = \sum x_k p(x_k)$$

• Variance (discrete): $\sigma^2 = \sum (x_n - \mu)^2 p(x_n)$

General useful formulas (continued):

- Gaussian (continuous): Density $(2\pi\sigma^2)^{-1/2} \exp(-(x-\mu)^2/2\sigma^2)$
- Taylor Approximation of $\log(1 + x)$: $\log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} + O(x^4)$
- Taylor Approximation of $\log(1 x)$: $\log(1 - x) = -x - \frac{x^2}{2} - \frac{x^3}{3} + O(x^4)$

Introduction o	Motivation 00000	Main Result	Lemmas ○○○○●○	Gaussianity Proof	Future Work o	Acknowledgments
Mean and Stand	ard Deviation					

Theorem (Mean on Square Lattice)

$$\forall n \in \mathbb{N}^+, \mu_{n+1,n+1} = \frac{1}{2}n+1 \sim \frac{n}{2}.$$

• Calculate using definition of first moment (mean)

Introduction O	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work ○	Acknowledgments
Mean and Stand	ard Deviation					

Theorem (Mean on Square Lattice)

$$\forall n \in \mathbb{N}^+, \mu_{n+1,n+1} = \frac{1}{2}n+1 \sim \frac{n}{2}.$$

• Calculate using definition of first moment (mean)

• Use index shift
$$\sum_{k=1}^{n+1} k \binom{n}{k-1}^2 = \sum_{k=0}^n k \binom{n}{k}^2 + \sum_{k=0}^n \binom{n}{k}^2$$

Introduction O	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work ○	Acknowledgments
Mean and Stand	ard Deviation					

Theorem (Mean on Square Lattice)

$$\forall n \in \mathbb{N}^+, \ \mu_{n+1,n+1} = \frac{1}{2}n+1 \sim \frac{n}{2}.$$

Calculate using definition of first moment (mean)

• Use index shift
$$\sum_{k=1}^{n+1} k \binom{n}{k-1}^2 = \sum_{k=0}^n k \binom{n}{k}^2 + \sum_{k=0}^n \binom{n}{k}^2$$

 Use standard techniques for evaluating binomial coefficients

Introduction O	Motivation	Main Result	Lemmas ○○○○○●	Gaussianity Proof	Future Work ○	Acknowledgments
Mean and Standa	ard Deviation					

$$\forall n \in \mathbb{N}^+, \sigma_{n+1,n+1} = \frac{n}{2\sqrt{2(n-1)}} \sim \frac{\sqrt{n}}{2\sqrt{2}}.$$

 Calculate using definition of second standardized moment (standard deviation)

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
			000000			
Mean and Stand	lard Deviation					

$$\forall n \in \mathbb{N}^+, \, \sigma_{n+1,n+1} = \frac{n}{2\sqrt{2(n-1)}} \sim \frac{\sqrt{n}}{2\sqrt{2}}.$$

 Calculate using definition of second standardized moment (standard deviation)

• Use index shift
$$\sum_{k=1}^{n+1} (k - (\frac{1}{2}n + 1))^2 {n \choose k-1}^2 = \sum_{k=0}^{n} (k+1 - (\frac{1}{2}n + 1))^2 {n \choose k}^2$$

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
			000000			
Mean and Stand	lard Deviation					

$$\forall n \in \mathbb{N}^+, \sigma_{n+1,n+1} = \frac{n}{2\sqrt{2(n-1)}} \sim \frac{\sqrt{n}}{2\sqrt{2}}.$$

 Calculate using definition of second standardized moment (standard deviation)

• Use index shift
$$\sum_{k=1}^{n+1} \left(k - \left(\frac{1}{2}n + 1\right)\right)^2 {\binom{n}{k-1}}^2 = \sum_{k=0}^{n} (k+1 - \left(\frac{1}{2}n + 1\right))^2 {\binom{n}{k}}^2$$

• Split into three sums via binomial expansion

Introduction O	Motivation 00000	Main Result	Lemmas ○○○○○●	Gaussianity Proof	Future Work	Acknowledgments
Mean and Standa	ard Deviation					

$$\forall n \in \mathbb{N}^+, \sigma_{n+1,n+1} = \frac{n}{2\sqrt{2(n-1)}} \sim \frac{\sqrt{n}}{2\sqrt{2}}.$$

- Calculate using definition of second standardized moment (standard deviation)
- Use index shift $\sum_{k=1}^{n+1} \left(k \left(\frac{1}{2}n + 1\right)\right)^2 {\binom{n}{k-1}}^2 = \sum_{k=0}^n (k+1 \left(\frac{1}{2}n + 1\right))^2 {\binom{n}{k}}^2$
- Split into three sums via binomial expansion
- Use standard techniques for evaluating binomial coefficients

Introduction	Motivation	Main Result	Lemmas	Gaussianity Proof	Future Work	Acknowledgments
				00000		
Reminder of Mai	n Result					

Theorem (Gaussianity on a Square Lattice)

Let n be a positive integer, and consider the distribution of the number of summands among all simple jump paths with starting point (i, j) wjere $1 \le i, j \le n$, and each distribution represents a (not necessarily unique) decomposition of some positive number. This distribution converges to a Gaussian as $n \to \infty$.

Introduction o	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Stirling Formula B	Expansion					

• Density function:
$$f_n(k+1) := \frac{t_{n+1,n+1,k+1}}{s_{n+1,n+1}} = \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

Introduction o	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work ○	Acknowledgments
Stirling Formula	Expansion					

• Density function:
$$f_n(k+1) := \frac{t_{n+1,n+1,k+1}}{s_{n+1,n+1}} = \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

• Simplifying binomial coefficients gives $\frac{(n!)^4}{(k!)^2((n-k)!)^2(2n)!}$

Introduction o	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Stirling Formula	Expansion					

• Density function:
$$f_n(k+1) := \frac{t_{n+1,n+1,k+1}}{s_{n+1,n+1}} = \frac{\binom{n}{k}^2}{\binom{2n}{n}}$$

- Simplifying binomial coefficients gives $\frac{(n!)^4}{(k!)^2((n-k)!)^2(2n)!}$
- Use Stirling's Approximation on each factor: $m! \sim m^m e^{-m} \sqrt{2\pi m}$

Introduction O	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Stirling Formula	Expansion					

• End result of Stirling expansion is $f_n(k+1) \sim \frac{n^{2n}}{k^{2k} \cdot (n-k)^{2n-2k} \cdot 2^{2n} \cdot \frac{1}{4} \cdot \sqrt{4\pi n}}$

Introduction O	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work ○	Acknowledgments
Stirling Formula	Expansion					

- End result of Stirling expansion is $f_n(k+1) \sim \frac{n^{2n}}{k^{2k} \cdot (n-k)^{2n-2k} \cdot 2^{2n} \cdot \frac{1}{4} \cdot \sqrt{4\pi n}}$
- Let $P_n(k+1) := \frac{n^n}{k^k(n-k)^{n-k}2^n}$ and $S_n(k+1) := \frac{1}{\frac{1}{2}\sqrt{\pi n}}$, then $f_n(k+1) \sim P_n(k+1)^2 S_n(k+1)$

Introduction O	Motivation 00000	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Stirling Formula	Expansion					

- End result of Stirling expansion is $f_n(k+1) \sim \frac{n^{2n}}{k^{2k} \cdot (n-k)^{2n-2k} \cdot 2^{2n} \cdot \frac{1}{4} \cdot \sqrt{4\pi n}}$
- Let $P_n(k+1) := \frac{n^n}{k^k(n-k)^{n-k}2^n}$ and $S_n(k+1) := \frac{1}{\frac{1}{2}\sqrt{\pi n}}$, then $f_n(k+1) \sim P_n(k+1)^2 S_n(k+1)$
- Let $k := \mu_{n+1,n+1} + x\sigma_{n+1,n+1}$, then $f_n(k+1)dk = f_n(\mu_n + x\sigma_n + 1)\sigma_n dx \sim f_n(\mu_n + x\sigma_n + 1)\frac{\sqrt{n}}{2}dx$

Introduction O	Motivation 00000	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Stirling Formula	Expansion					

- End result of Stirling expansion is $f_n(k+1) \sim \frac{n^{2n}}{k^{2k} \cdot (n-k)^{2n-2k} \cdot 2^{2n} \cdot \frac{1}{4} \cdot \sqrt{4\pi n}}$
- Let $P_n(k+1) := \frac{n^n}{k^k(n-k)^{n-k}2^n}$ and $S_n(k+1) := \frac{1}{\frac{1}{2}\sqrt{\pi n}}$, then $f_n(k+1) \sim P_n(k+1)^2 S_n(k+1)$
- Let $k := \mu_{n+1,n+1} + x\sigma_{n+1,n+1}$, then $f_n(k+1)dk = f_n(\mu_n + x\sigma_n + 1)\sigma_n dx \sim f_n(\mu_n + x\sigma_n + 1)\frac{\sqrt{n}}{2}dx$
- x quantifies number of standard deviations from mean

Introduction O	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Gaussianity Calc	ulation					

Apply logarithm to
$$P_n(k+1) = \frac{n^n}{k^k(n-k)^{n-k}2^n}$$
:

 $\log P_{n}(k+1) = n \log(n) - k \log(k) - (n-k) \log(n-k) - n \log(2)$ Rewrite $k = \frac{n}{2} + \frac{x\sqrt{n}}{2\sqrt{2}} = \frac{n}{2} \left(1 + \frac{x}{\sqrt{2n}}\right)$ to expand $\log(k)$ and $\log(n-k)$:

$$\log(k) = \log\left(\frac{n}{2}\left(1 - \frac{x}{\sqrt{2n}}\right)\right) \approx \log(n) - \log(2) + \log\left(1 - \frac{x}{\sqrt{2n}}\right)$$
$$\log(n-k) = \log\left(\frac{n}{2}\left(1 + \frac{x}{\sqrt{2n}}\right)\right) \approx \log(n) - \log(2) + \log\left(1 + \frac{x}{\sqrt{2n}}\right)$$

Introduction O	Motivation 00000	Main Result	Lemmas 000000	Gaussianity Proof	Future Work ○	Acknowledgments
Gaussianity Calc	ulation					

Substitute logarithm expansions and approximate

 $\log\left(1+\frac{x}{\sqrt{2n}}\right)$ and $\log\left(1-\frac{x}{\sqrt{2n}}\right)$ to second order to conclude

$$\log P_n(k+1) \sim -\frac{n}{2} \log \left(1-\frac{x^2}{2n}\right) - \frac{x\sqrt{n}}{2} \left(\frac{x}{\sqrt{n}} + O\left(\frac{1}{n^{\frac{3}{2}}}\right)\right)$$

Approximate $\log\left(1-\frac{x^2}{2n}\right)$ up to second order:

$$-\frac{n}{2}\left(-\frac{x^2}{2n}+O\left(\frac{1}{n^2}\right)\right)-\frac{x\sqrt{n}}{2}\left(\frac{x}{\sqrt{n}}+O\left(\frac{1}{n^{\frac{3}{2}}}\right)\right) \sim -\frac{x^2}{4}$$

Introduction	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
Gaussianity Calo	ulation					

It follows that

$$P_n(k+1) \sim e^{-rac{x^2}{4}} \Rightarrow P_n(k+1)^2 \sim e^{-rac{x^2}{2}} \Rightarrow$$

 $f_n(k+1) \sim rac{e^{-rac{x^2}{2}}}{\sqrt{2\pi}}$

• Normal distribution, mean 0, standard deviation 1.

Introduction O	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work ●	Acknowledgments

- Find closed formulas for enumerating compound jump paths
- Generalize Gaussianity result to compound jump paths
- Generalize methodology to general positive linear recurrences

Introduction o	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
References						

- H. Alpert, *Differences of Multiple Fibonacci Numbers*, October 20, 2009
- I. Badinskki, C. Huffaker, N. Mccue, C. Miller, K. Miller, S. Miller, M. Stone, *The M&M Game: From Morsels to Modern Mathematics*, September 3, 2015
- O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. Miller, P. Tosteson, *The Average Gap Distribution For Generalized Zeckendorf Decompositions*, Fibonacci Quarterly, December 12, 2012.
- L. Cano, R. Diaz, *Continuous Analogues for the Binomial Coefficients and the Catalan Numbers*, March 22, 2016

Introduction O	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work ○	Acknowledgments
References						

- R. Doward, P. Ford, E. Fourakis, P. Harris, S. Miller, E. Palsson, H. Paugh, *New Behavior in Legal Decompositions Arising From Non-Positive Linear Recurrences*, September 10, 2015
- V. Guo, J. Zeng *New Congruences for Sums Involving Apery Numbers or Central Delannoy Numbers*, International Journal of Number Theory, May 25, 2012
- E. Hart, *The Zeckendorf Decomposition of Certain Fibonacci-Lucas Products*, Fibonacci Quarterly, November 1998
- E. Hart, L. Sanchis, *On The Occurrence Of Fn in The Zeckendorf Decomposition of nFn*, February 1997

Introduction o	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work o	Acknowledgments
References						

- M. Kanovich, *Multiset Rewriting Over Fibonacci and Tribonacci Numbers*, Journal of Computer and System Sciences, September 2014
- M. Kologlu, G. Kopp, S. Miller, Y. Wang, On the Number of Summands in Zeckendorf Decompositons, Journal of Number Theory, August 19, 2010.
- C. Krattenhaler, Lattice Path Enumeration, April 17, 2015
- T. Mansour, A. Munagi, M. Shattuck *Recurrence Relations* and *Two Dimensional Set Partitions*, Journal of Integer Sequences, March 26, 2011

Introduction o	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work	Acknowledgments
References						

- S. Miller, Y. Wang, *Gaussian Behavior in Generalized* Zeckendorf Decompositions, July 14, 2011
- S. Miller, The Probability Lifesaver, 2017
- S. Miller, 2018 Summer Research Program for Talented High School Students, Lecture I, June 11, 2018
- J. Watkins, *Moments and Generating Functions*, September 29, 2009

Introduction o	Motivation	Main Result	Lemmas 000000	Gaussianity Proof	Future Work ○	Acknowledgments ○○○○●
Thank You						
Thank Y	ou					

- Special thanks to...
- Carnegie Mellon University Department of Mathematical Sciences
- Williams College Department of Mathematics and Statistics
- The National Science Foundation
- The organizing committee for the 2018 Youth Mathematicians Conference and the Ohio State University