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Zeckendorf Decompositions

Definition (Fibonacci Numbers)
The Fibonacci Numbers are a sequence defined recursively
with Fn = Fn−1 + Fn−2 ∀n ≥ 2 where F0 = 1 and F1 = 1.

Beginning of sequence:
1,1,2,3,5,8,13,21,34,55,89,144, ...
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Zeckendorf Decompositions

Definition (Zeckendorf Decompositions)
A Zeckendorf Decomposition is a way to write a natural
number as the sum of non-adjacent Fibonacci Numbers.

Theorem (Zeckendorf’s Theorem)
Every natural number has a unique Zeckendorf Decomposition.

Example (Greedy Algorithm):
335

335 = 233 + 102
335 = 233 + 89 + 13
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Simple Jump Paths

Definition (Simple Jump Paths)
A simple jump path is a path on the lattice grid where each
movement on the lattice grid consists of at least one unit
movement to the left and one unit movement downward.

We count simple jump paths from (a,b) to (0,0), where
a,b. ∈ N+.

Let the number of simple jump paths from (a,b) to (0,0)
be denoted sa,b.

Any simple jump path must include the use of (a,b) and
(0,0).

Let the number of simple jump paths from (a,b) to (0,0)
with k steps be denoted ta,b,k .
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Simple Jump Paths



50 · · · · · · · · · · · · · · ·
28 48 · · · · · · · · · · · ·
14 24 40 · · · · · · · · ·
7 12 20 33 · · · · · ·
3 5 9 17 30 · · ·
1 2 4 8 16 29


Our goal is to enumerate how many paths are required for
a linear search of a Zeckendorf decomposition from a
certain starting point in the lattice.
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Simple Jump Paths

We construct a 2-dimensional sequence as a model of the
Fibonacci Sequence in 2 dimensions.

Long-term goal: generalize to even higher dimensions.

Set z0,0 := 1.

For each n ∈ N+, check if any downward/leftward path
sums to the number. If not, add the number to the
sequence so that it is added to the shortest unfilled
diagonal moving from the bottom right to the top left.
Each simple jump path on this lattice represents a
Zeckendorf Decomposition.
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Prerequisite Definitions

General useful formulas for random variables:
Gaussian (continuous): Random variable with density
(2πσ2)−1/2 exp(−(x − µ)2/2σ2), mean µ, variance σ2.

Central Limit Theorem: Let X1, ...,XN be i.i.d. random
variables with finite moments, mean µ and standard
deviation σ. Also denote X N :=

∑N
i=1 Xi
N . Then the

distribution of ZN := X N−µ
σ√
N

converges to a Gaussian.
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Theorem Statement

Theorem (Gaussianity on a Square Lattice)

Let n be a positive integer, and consider the distribution of the
number of summands among all simple jump paths with starting
point (i , j) wjere 1 ≤ i , j ≤ n, and each distribution represents a
(not necessarily unique) decomposition of some positive
number. This distribution converges to a Gaussian as n→∞.
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Simulations and Explanation of Main Result Statement

Represents {t10,10,k}10
k=1

Special case: simple jump paths over a square lattice for
n = 10, starting point (10,10)
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Simulations and Explanation of Main Result Statement

Represents {t30,70,k}30
k=1

Simple jump paths over a rectangular lattice with starting
point (70,30)
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Simulations and Explanation of Main Result Statement

Want to show convergence to a normal distribution as
n→∞

The distribution will be taken over values of k that give
legal jump paths for the given n.

Simple jump paths: k ∈ {1,2, ...,n}



Introduction Motivation Main Result Lemmas Gaussianity Proof Future Work Acknowledgments

Simulations and Explanation of Main Result Statement

Want to show convergence to a normal distribution as
n→∞

The distribution will be taken over values of k that give
legal jump paths for the given n.

Simple jump paths: k ∈ {1,2, ...,n}



Introduction Motivation Main Result Lemmas Gaussianity Proof Future Work Acknowledgments

Simulations and Explanation of Main Result Statement

Want to show convergence to a normal distribution as
n→∞

The distribution will be taken over values of k that give
legal jump paths for the given n.

Simple jump paths: k ∈ {1,2, ...,n}



Introduction Motivation Main Result Lemmas Gaussianity Proof Future Work Acknowledgments

Counting Jump Paths

Lemma (Simple Jump Path Partition Lemma)

∀a,b ∈ N, sa,b =
∑min{a,b}

k=1 ta,b,k .

Lemma (The Cookie Problem)
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)
.

Line up C + P − 1 identical cookies

Choose P − 1 cookies to hide and place dividers in those
positions
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Counting Jump Paths

Lemma (Enumerating Simple Jump Paths)

∀a,b ∈ N, k ∈ min{a,b}, ta,b,k =
(a−1

k−1

)(b−1
k−1

)
.

First factor is number of ways to group a objects into k
nonempty groups

Second factor is number of ways to group b objects into k
nonempty groups

Groupings are independently determined, use Cookie
Problem lemma
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Mean and Standard Deviation

General useful formulas:
p(xk ): probability of event xk occurring, one of finitely many
values (events)

Density function: fn(k + 1) :=
tn+1,n+1,k+1

sn+1,n+1
=

(n
k)

2

(2n
n )

Mean (discrete): µ =
∑

xkp(xk )

Variance (discrete): σ2 =
∑

(xn − µ)2p(xn)



Introduction Motivation Main Result Lemmas Gaussianity Proof Future Work Acknowledgments

Mean and Standard Deviation

General useful formulas (continued):
Gaussian (continuous): Density
(2πσ2)−1/2 exp(−(x − µ)2/2σ2)

Taylor Approximation of log(1 + x):
log(1 + x) = x − x2

2 + x3

3 + O(x4)

Taylor Approximation of log(1− x):
log(1− x) = −x − x2

2 −
x3

3 + O(x4)
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Mean and Standard Deviation

Theorem (Mean on Square Lattice)

∀n ∈ N+, µn+1,n+1 = 1
2n + 1 ∼ n

2 .

Calculate using definition of first moment (mean)

Use index shift
∑n+1

k=1 k
( n

k−1

)2
=
∑n

k=0 k
(n

k

)2
+
∑n

k=0
(n

k

)2

Use standard techniques for evaluating binomial
coefficients



Introduction Motivation Main Result Lemmas Gaussianity Proof Future Work Acknowledgments

Mean and Standard Deviation

Theorem (Mean on Square Lattice)

∀n ∈ N+, µn+1,n+1 = 1
2n + 1 ∼ n

2 .

Calculate using definition of first moment (mean)

Use index shift
∑n+1

k=1 k
( n

k−1

)2
=
∑n

k=0 k
(n

k

)2
+
∑n

k=0
(n

k

)2

Use standard techniques for evaluating binomial
coefficients



Introduction Motivation Main Result Lemmas Gaussianity Proof Future Work Acknowledgments

Mean and Standard Deviation

Theorem (Mean on Square Lattice)

∀n ∈ N+, µn+1,n+1 = 1
2n + 1 ∼ n

2 .

Calculate using definition of first moment (mean)

Use index shift
∑n+1

k=1 k
( n

k−1

)2
=
∑n

k=0 k
(n

k

)2
+
∑n

k=0
(n

k

)2

Use standard techniques for evaluating binomial
coefficients



Introduction Motivation Main Result Lemmas Gaussianity Proof Future Work Acknowledgments

Mean and Standard Deviation

Theorem (Standard Deviation on Square Lattice)

∀n ∈ N+, σn+1,n+1 = n
2
√

2(n−1)
∼

√
n

2
√

2
.

Calculate using definition of second standardized moment
(standard deviation)

Use index shift
∑n+1

k=1
(
k −

(1
2n + 1

))2 ( n
k−1

)2
=∑n

k=0(k + 1−
(1

2n + 1
)
)2(n

k

)2

Split into three sums via binomial expansion

Use standard techniques for evaluating binomial
coefficients
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Reminder of Main Result

Theorem (Gaussianity on a Square Lattice)

Let n be a positive integer, and consider the distribution of the
number of summands among all simple jump paths with starting
point (i , j) wjere 1 ≤ i , j ≤ n, and each distribution represents a
(not necessarily unique) decomposition of some positive
number. This distribution converges to a Gaussian as n→∞.
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Stirling Formula Expansion

Density function: fn(k + 1) :=
tn+1,n+1,k+1

sn+1,n+1
=

(n
k)

2

(2n
n )

Simplifying binomial coefficients gives (n!)4

(k!)2((n−k)!)2(2n)!

Use Stirling’s Approximation on each factor:
m! ∼ mme−m

√
2πm
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Stirling Formula Expansion

End result of Stirling expansion is
fn(k + 1) ∼ n2n

k2k ·(n−k)2n−2k ·22n· 14 ·
√

4πn

Let Pn(k + 1) := nn

kk (n−k)n−k 2n and Sn(k + 1) := 1
1
2

√
πn

,

then fn(k + 1) ∼ Pn(k + 1)2Sn(k + 1)

Let k := µn+1,n+1 + xσn+1,n+1, then
fn(k +1)dk = fn(µn+xσn+1)σndx ∼ fn(µn+xσn+1)

√
n

2 dx

x quantifies number of standard deviations from mean
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Gaussianity Calculation

Apply logarithm to Pn(k + 1) = nn

kk (n−k)n−k 2n :

logPn(k +1) = n log(n)−k log(k)− (n−k) log(n−k)−n log(2)

Rewrite k = n
2 + x

√
n

2
√

2
= n

2

(
1 + x√

2n

)
to expand log(k) and

log(n − k):

log(k) = log

(
n
2

(
1− x√

2n

))
≈ log(n)−log(2)+log

(
1− x√

2n

)

log(n−k) = log

(
n
2

(
1 +

x√
2n

))
≈ log(n)−log(2)+log

(
1 +

x√
2n

)
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Gaussianity Calculation

Substitute logarithm expansions and approximate
log
(

1 + x√
2n

)
and log

(
1− x√

2n

)
to second order to conclude

logPn(k + 1) ∼ −n
2
log

(
1− x2

2n

)
− x
√

n
2

(
x√
n
+ O

(
1

n
3
2

))
Approximate log

(
1− x2

2n

)
up to second order:

−n
2

(
− x2

2n
+ O

(
1
n2

))
− x
√

n
2

(
x√
n
+ O

(
1

n
3
2

))
∼ −x2

4
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Gaussianity Calculation

It follows that

Pn(k + 1) ∼ e−
x2
4 ⇒ Pn(k + 1)2 ∼ e−

x2
2 ⇒

fn(k + 1) ∼ e−
x2
2

√
2π

Normal distribution, mean 0, standard deviation 1.
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Find closed formulas for enumerating compound jump
paths

Generalize Gaussianity result to compound jump paths

Generalize methodology to general positive linear
recurrences
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